Comparative Analysis of ResNet50V2, ResNet152V2, and MobileNetV2 Architectures in Monkeypox Classification

Authors

  • Habi Jiyan Mustaqim Universitas Mercu Buana Yogyakarta
  • Ozzi Suria Universitas Mercu Buana Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i4.9756

Keywords:

Monkeypox, ResNet, MobileNet, Image Classification, CNN

Abstract

Convolutional Neural Networks (CNN) are recognized for their high accuracy in image classification, but large-scale datasets and significant computer resources are needed to train them from scratch, though. Transfer learning offers a practical solution by leveraging pre-trained models to accelerate training even when data is limited. Although CNNs have been widely applied to skin disease classification, specific evaluations of architectures such as ResNet50V2, ResNet152V2, and MobileNetV2 for monkeypox image classification remain scarce. Therefore, this study aims to comprehensively compare the effectiveness and trade-offs of these architectures in detecting monkeypox through transfer learning. The evaluation focuses on balancing accuracy and computational efficiency across stages, including data collection, preprocessing, model design, training, and testing. The dataset, obtained from Kaggle, consists of 2,310 images across four classes: monkeypox, chickenpox, measles, and normal. Transfer learning was implemented using fine-tuned weights from ImageNet. According to the results, ResNet152V2 needed the most training time but had the lowest loss and the greatest validation accuracy (98.28%). ResNet50V2 maintained a good compromise between accuracy (97.84%) and training efficiency, while MobileNetV2 yielded the best overall classification metrics (97.86% for accuracy, precision, recall, and F1-score), indicating strong generalization. These findings highlight the distinct strengths of each model, offering insights into architecture selection based on specific operational constraints and goals.

Downloads

Download data is not yet available.

References

[1] M. E. Wilson, J. M. Hughes, A. M. McCollum, and I. K. Damon, “Human Monkeypox,” Clinical Infectious Diseases, vol. 58, no. 2, pp. 260–267, Jan. 2014, doi: 10.1093/CID/CIT703.

[2] M. Pal, F. Mengstie, and V. Kandi, “Epidemiology, Diagnosis, and Control of Monkeypox Disease: A comprehensive Review,” American Journal of Infectious Diseases and Microbiology, vol. 5, no. 2, pp. 94–99, 2017, doi: 10.12691/ajidm-5-2-4.

[3] P. Y. Nguyen, W. S. Ajisegiri, V. Costantino, A. A. Chughtai, and C. R. MacIntyre, “Reemergence of Human Monkeypox and Declining Population Immunity in the Context of Urbanization, Nigeria, 2017–2020,” Emerg Infect Dis, vol. 27, no. 4, p. 1007, Apr. 2021, doi: 10.3201/EID2704.203569.

[4] Kementerian Kesehatan Republik Indonesia, “Kasus Monkeypox Pertama di Indonesia Terkonfirmasi,” 2022.

[5] J. Liu, H. Sun, and J. Katto, “Learned Image Compression With Mixed Transformer-CNN Architectures,” 2023. doi: https://doi.org/10.1109/CVPR52729.2023.01383.

[6] A. W. Salehi et al., “A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope,” Sustainability 2023, Vol. 15, Page 5930, vol. 15, no. 7, p. 5930, Mar. 2023, doi: 10.3390/SU15075930.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2323, 1998, doi: 10.1109/5.726791.

[8] D. M. Wonohadidjojo, “Perbandingan Convolutional Neural Network pada Transfer Learning Method untuk Mengklasifikasikan Sel Darah Putih,” Ultimatics : Jurnal Teknik Informatika, vol. 13, no. 1, pp. 51–57, Jun. 2021, doi: 10.31937/TI.V13I1.2040.

[9] S. Islam, F. A. Nishi, T. Akter, and M. A. Azim, “Monkeypox Skin Lesion Detection with Deep Learning and Machine Learning,” Int J Comput Appl, vol. 185, no. 23, pp. 39–45, Jul. 2023, doi: 10.5120/IJCA2023922984.

[10] P. Sarah Fransisca and N. Matondang, “Deteksi Citra Digital Penyakit Cacar Monyet menggunakan Algoritma Convolutional Neural Network dengan Arsitektur MobileNetV2 Digital Image Detection of Monkeypox Disease using Convolutional Neural Network Algorithm with MobilenetV2 Architecture”, [Online]. Available: http://journal.ipb.ac.id/index.php/jika

[11] T. O. Saputra, “Klasifikasi Penyakit Monkeypox Berdasarkan Lesi Kulit Menggunakan Metode CNN Arsitektur ResNet-50,” 2023.

[12] R. R. E. Prasetyo and M. Ichwan, “Perbandingan Metode Deep Residual Network 50 dan Deep Residual Network 152 untuk Deteksi Penyakit Pneumonia pada Manusia,” MIND Journal, vol. 6, no. 2, pp. 168–182, Dec. 2021, doi: 10.26760/mindjournal.v6i2.168-182.

[13] “MonkeyPox_Aug_Munim.” Accessed: Jun. 02, 2025. [Online]. Available: https://www.kaggle.com/datasets/ahmedmunim/monkeypox-aug-munim

[14] A. Famili, W. Shen, R. Weber, And E. Simoudis, “Data preprocessing and intelligent data analysis,” Intelligent Data Analysis, vol. 1, no. 1–4, pp. 3–23, Jan. 1997, doi: 10.1016/S1088-467X(98)00007-9.

[15] M. B. Kurniawan and E. Utami, “Performance Comparison of ResNet50, VGG16, and MobileNetV2 for Brain Tumor Classification on MRI Images,” SISTEMASI, vol. 14, no. 2, pp. 767–777, Mar. 2025, doi: 10.32520/STMSI.V14I2.5054.

[16] “ResNet and ResNetV2.” Accessed: Jun. 22, 2025. [Online]. Available: https://keras.io/api/applications/resnet/

[17] M. Harahap, E. M. Laia, L. S. Sitanggang, M. Sinaga, D. F. Sihombing, and A. M. Husein, “Deteksi Penyakit Covid-19 Pada Citra X-Ray Dengan Pendekatan Convolutional Neural Network (CNN),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 70–77, Feb. 2022, doi: 10.29207/RESTI.V6I1.3373.

[18] M. N. Winnarto, “Penerapan Arsitektur Mobilenetv2 Pada Klasifikasi Penyakit Daun Teh,” pp. 1–82, 2021, Accessed: Jun. 22, 2025. [Online]. Available: https://repository.bsi.ac.id/repo/35611/Penerapan-Arsitektur-Mobilenetv2-Pada-Klasifikasi-Penyakit-Daun-Teh

[19] L. Sharma and M. Carpenter, Computer Vision and Internet of Things. Boca Raton: Chapman and Hall/CRC, 2022. doi: 10.1201/9781003244165.

[20] R. B. Pereira, A. Plastino, B. Zadrozny, and L. H. C. Merschmann, “Correlation analysis of performance measures for multi-label classification,” Inf Process Manag, vol. 54, no. 3, pp. 359–369, May 2018, doi: 10.1016/J.IPM.2018.01.002.

[21] A. F. Giraldo-Forero, J. A. Jaramillo-Garzón, and C. G. Castellanos-Domínguez, “Evaluation of Example-Based Measures for Multi-label Classification Performance,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9043, pp. 557–564, 2015, doi: 10.1007/978-3-319-16483-0_54.

[22] F. A. Nugroho, N. Wiliani, and D. Direvisi, “Perbandingan Kinerja ANN dan CNN dalam Tugas Klasifikasi Citra Berbasis Pembelajaran Mesin,” Teknomatika: Jurnal Informatika dan Komputer, vol. 18, no. 1, pp. 22–27, Jun. 2025, doi: 10.30989/TEKNOMATIKA.V18I1.1561.

[23] A. L. Pramana, “Comparative Analysis of Deep Learning Method Evaluation on Vehicle Type Classification,” Journal of Computer Science and Visual Communication Design, vol. 9, no. 1, pp. 451–465, Jul. 2024, doi: 10.55732/JIKDISKOMVIS.V9I1.1252.

[24] N. Merlina, A. Prasetyo, I. Zuniarti, N. A. Mayangky, D. N. Sulistyowati, and F. Aziz, “Improving Early Detection of Cervical Cancer Through Deep Learning-Based Pap Smear Image Classification,” Journal of Applied Data Sciences, vol. 6, no. 2, pp. 952–968, Mar. 2025, doi: 10.47738/JADS.V6I2.576.

[25] Y. Azhar, W. P. Wicaksono, Z. Sari, and W. P. Wicaksono, “Pneumonia Diagnosis Through Deep Learning: ResNet50v2 Model Implementation,” Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, vol. 13, no. 2, pp. 349–358, Jul. 2024, doi: 10.23887/JANAPATI.V13I2.72068.

[26] X. Liao et al., “Automated detection of abnormal respiratory sound from electronic stethoscope and mobile phone using MobileNetV2,” Biocybern Biomed Eng, vol. 43, no. 4, pp. 763–775, Oct. 2023, doi: 10.1016/J.BBE.2023.11.001.

Downloads

Published

2025-08-05

How to Cite

[1]
H. J. Mustaqim and Ozzi Suria, “Comparative Analysis of ResNet50V2, ResNet152V2, and MobileNetV2 Architectures in Monkeypox Classification”, JAIC, vol. 9, no. 4, pp. 1326–1331, Aug. 2025.

Issue

Section

Articles

Similar Articles

<< < 23 24 25 

You may also start an advanced similarity search for this article.