Opinion Mining of Pedometer Application Reviews on Google Play Store Using Fine-Tuned IndoBERT-Base

Authors

  • Anggi Primono Universitas Ngudi Waluyo
  • Ucta Pradema Sanjaya Universitas Ngudi Waluyo

DOI:

https://doi.org/10.30871/jaic.v10i1.12184

Keywords:

Opinion Mining, IndoBERT, Fine-Tuning, Pedometer, Google Play Store

Abstract

User reviews on the Google Play Store provide valuable insights into user satisfaction and application performance. However, manual analysis of these reviews is inefficient due to large data volume and the informal characteristics of the Indonesian language. This study proposes an opinion mining approach using a fine-tuned IndoBERT-Base model to classify user sentiments into three classes: positive, neutral, and negative. A total of 1,665 reviews of a Pedometer application were collected, with 1,636 reviews retained after preprocessing. The dataset was divided into training, validation, and test sets using stratified sampling to preserve class distribution. Experimental results show that the proposed model achieves an accuracy of 94.51% and a weighted F1-score of 0.93 on the test set. Despite strong overall performance, the results indicate that class imbalance significantly affects the classification of neutral and negative sentiments. Error analysis reveals that ambiguous expressions and limited samples in minority classes remain challenging for the model. This study demonstrates that fine-tuned IndoBERT-Base is effective for sentiment analysis of Indonesian mobile application reviews while highlighting the importance of addressing imbalanced data in opinion mining tasks.

Downloads

Download data is not yet available.

References

[1] B. Lin, N. Cassee, A. Serebrenik, G. Bavota, N. Novielli, and M. Lanza, “Opinion Mining for Software Development: A Systematic Literature Review,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 3, 2022, doi: 10.1145/3490388.

[2] T. Shaik, X. Tao, C. Dann, H. Xie, Y. Li, and L. Galligan, “Sentiment analysis and opinion mining on educational data: A survey,” Nat. Lang. Process. J., vol. 2, no. October 2022, p. 100003, 2023, doi: 10.1016/j.nlp.2022.100003.

[3] S. Biswas and G. Poornalatha, “Opinion Mining Using Multi-Dimensional Analysis,” IEEE Access, vol. 11, no. March, pp. 25906–25916, 2023, doi: 10.1109/ACCESS.2023.3256521.

[4] G. R. McCormack, J. C. Spence, T. L. McHugh, and W. Kerry Mummery, “The effect of neighborhood walkability on changes in physical activity and sedentary behavior during a 12-week pedometer-facilitated intervention,” PLoS One, vol. 17, no. 12 December, 2022, doi: 10.1371/journal.pone.0278596.

[5] F. Baharuddin, “Fine-Tuning IndoBERT for Indonesian Exam Question Classification Based on Bloom ’ s Taxonomy,” J. Inf. Syst. Eng. Bus. Intell., vol. 9, no. 2.

[6] R. I. Perwira and V. A. Permadi, “Domain-Specific Fine-Tuning of IndoBERT for Aspect- Based Sentiment Analysis in Indonesian Travel User- Generated Content,” J. Inf. Syst. Eng. Bus. Intell., vol. 11, no. 1, pp. 30–40, 2025.

[7] A. Simanjuntak, R. Lumbantoruan, K. Sianipar, R. Gultom, M. Simaremare, and S. Situmeang, “Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 13, no. 1, pp. 60–67, 2024, doi: 10.22146/jnteti.v13i1.8532.

[8] D. Nuryadi et al., “Fine Tuning Indobert Untuk Analisis Sentimen Pada Ulasan Pengguna Aplikasi Tiket.Com Di Google Play Store,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 2, pp. 3577–3583, 2025, doi: 10.36040/jati.v9i2.13204.

[9] R. A. E. V. T. Sapanji, D. Hamdani, and P. Harahap, “Sentiment Analysis of the Top 5 E-commerce Platforms in Indonesia using Text Mining and Natural Language Processing (NLP),” J. Appl. Informatics Comput., vol. 7, no. 2, pp. 202–211, 2023, doi: 10.30871/jaic.v7i2.6517.

[10] F. Fachrurrazi, “Perancangan Aplikasi Penghitung Langkah Kaki Berbasis Android Mengunakan MIT App Inventor,” J. Sains dan Teknol., vol. 01, no. 01, pp. 19–25, 2024..

[11] G. Daruhadi and P. Sopiati, “Metode Pengumpulan Data Penelitian,” J-CEKI J. Cendekia Ilm., vol. 3, no. 5, pp. 5423–5443, 2024.

[12] A. N. A. Zulkifli, and N. A. Shafie, “Review of the Lazada application on Google Play Store: sentiment analysis,” J. Comput. Res. Innov., vol. 9, no. 1, 2024, doi: 10.24191/jcrinn.v9i1.412.

[13] M. F. Kono, I. N. Fajri, and Y. Pristyanto, “Public Sentiment Analysis on Corruption Issues in Indonesia Using IndoBERT Fine-Tuning, Logistic Regression, and Linear SVM,” J. Appl. Informatics Comput., vol. 9, no. 5, pp. 2616–2628, 2025, doi: 10.30871/jaic.v9i5.10537.

[14] A. ’ Zhahrina, U. Sofiah, D. Wahyu, A. Andayani, N. Khairurrabbani, and F. Saputri, “Penerapan Metode Support Vector Machine (SVM) dalam Analisis Sentimen Ulasan Aplikasi Tokopedia di Google Play Store,” SEMINAR NASIONAL CORISINDO no. September 2025, pp. 84–91.

[15] A. Prabowo and F. Indra Sanjaya, “Penerapan Metode Transfer Learning Pada Indobert Untuk Analisis Sentimen Teks Bahasa Jawa Ngoko Lugu,” Simkom, vol. 9, no. 2, pp. 205–217, 2024, doi: 10.51717/simkom.v9i2.478.

[16] D. Y. A. Ningrum, E. Daniati, and M. N. Muzaki, “Perbandingan Model BERT dan RNN-LSTM pada Analisis Sentimen Aplikasi BRI Mobile,” IJCSR Indones. J. Comput. Sci. Res., vol. 4, no. 2, pp. 75–85, 2025, [Online]. Available: https://subset.id/index.php/IJCSR

[17] R. Rahmadani, A. Rahim, and R. Rudiman, “Analisis Sentimen Ulasan ‘Ojol the Game’ Di Google Play Store Menggunakan Algoritma Naive Bayes Dan Model Ekstraksi Fitur Tf-Idf Untuk Meningkatkan Kualitas Game,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4988.

[18] R. Ulgasesa, A. B. P. Negara, and T. Tursina, “Pengaruh Stemming Terhadap Performa Klasifikasi Sentimen Masyarakat Tentang Kebijakan New Normal,” J. Sist. dan Teknol. Inf., vol. 10, no. 3, p. 286, 2022, doi: 10.26418/justin.v10i3.53880.

[19] Z. G. Ramadhan, W. M. Ashari, and M. Koprawi, “Perbandingan Kinerja Algoritma Machine Learning Deteksi Malware dengan Z-Score Normalization Hasil Terbaik pada Random Forest,” Jurnal Algoritma. pp. 1670–1681, 2025, doi: 10.33364/algoritma/v.22-2.3077.

[20] T. Aprilah, D. R. Ignatius, M. Setiadi, and W. Herowati, “Enhancing Aspect-Based Sentiment Analysis via Hugging Face Fine- Tuned IndoBERT,” J. Appl. Informatics Comput., vol. 9, no. 6, pp. 3821–3830, 2025.

[21] Muhammad Bayu Nugroho, Akhmad Khanif Zyen, and Nur Aeni Widiastuti, “Multiclass Sentiment Analysis of Electric Vehicle Incentive Policies Using IndoBERT and DeBERTa Algorithms,” J. Appl. Informatics Comput., vol. 9, no. 3, pp. 910–919, 2025, doi: 10.30871/jaic.v9i3.9511.

Downloads

Published

2026-02-11

How to Cite

[1]
A. Primono and U. P. Sanjaya, “Opinion Mining of Pedometer Application Reviews on Google Play Store Using Fine-Tuned IndoBERT-Base”, JAIC, vol. 10, no. 1, pp. 1101–1110, Feb. 2026.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.