Esscore: An OCR-Based Android App for Scoring Short Handwritten Answer Using Levenshtein Distance

Authors

  • Krisna Apriana Universitas Udayana
  • I Made Agus Dwi Suarjaya Universitas Udayana
  • Ni Kadek Dwi Rusjayanthi Universitas Udayana

DOI:

https://doi.org/10.30871/jaic.v9i4.9708

Keywords:

Black Box, EasyOCR, Levenshtein Distance, Short Handwritten Answer, System Usability Scale

Abstract

Manual evaluation of short answer tests is time-consuming and prone to subjectivity. This study presents Esscore, an Android-based application that automates the scoring of handwritten short answers using EasyOCR and the Levenshtein Distance algorithm. EasyOCR extracts text from student answers image, while Levenshtein Distance measures similarity against predefined answer keys, allowing tolerance for varied correct responses. The system was tested on 350 student’s handwritten answers, achieving 95.7% accuracy. Functional testing using 14 black box scenarios showed all features operated correctly without failure. A usability test conducted with the SUS method produced a score of 76.5, rated “Good” with a grade “B” and an “Acceptable” acceptance level. The Net Promoter Score (NPS) placed the application in the “Passive” category. These results confirm Esscore as a functional, accurate, and user-friendly solution for automated answer scoring in educational environments.

Downloads

Download data is not yet available.

References

[1] A. Sadriani, M. Ridwan, S. Ahmad, and I. Arifin, “PROSIDING SEMINAR NASIONAL Peran Guru Dalam Perkembangan Teknologi Pendidikan di Era Digital.” [Online]. Available: https://journal.unm.ac.id/index.php/Semnasdies62/index

[2] Amir Salim Khairul Rijal and Billy Hendrik, “Studi Literatur Sistem Penilaian Esai Otomatis Pada E-Learning Dengan Algoritma Winnowing,” Jurnal Sistem Informasi dan Ilmu Komputer, vol. 1, no. 3, pp. 163–172, Aug. 2023, doi: 10.59581/jusiik-widyakarya.v1i3.1227.

[3] K. Hamad and M. Kaya, “A Detailed Analysis of Optical Character Recognition Technology,” International Journal of Applied Mathematics, Electronics and Computers, vol. 4, no. Special Issue-1, pp. 244–244, Dec. 2016, doi: 10.18100/ijamec.270374.

[4] E. L. Amalia1, A. J. Jumadi, I. A. Mashudi3, W. Wibowo4, P. N. Malang, and P. Korespondensi, “Analisis Metode Cosine Similarity Pada Aplikasi Ujian Online Esai Otomatis ( Studi Kasus Jti Polinema ) Cosine Similarity Method Analysis On Automatic Esai Online Test Application”, doi: 10.25126/jtiik.202184356.

[5] D. Riyanto and A. Azis, “Implementation of the Jaccard Similarity Algorithm on Answer Type,” International Journal of Informatics and Information Systems, vol. 5, no. 2, pp. 76–83, 2022.

[6] K. Ayu Pradani, L. Hulliyyatus Suadaa, and P. Korespondensi, “Automated Essay Scoring Menggunakan Semantic Textual Similarity Berbasis Transformer Untuk Penilaian Ujian Esai Automated Essay Scoring Using Transformer-Based Semantic Textual Similarity For Essay Assessment”, doi: 10.25126/jtiik.2023107338.

[7] K. Saravanan, C. C. Chew, K. G. Tay, S. L. Kek, and A. Huong, “Exam Marks Summation App Using Tesseract OCR in Python,” International Journal of Integrated Engineering, vol. 14, no. 3, pp. 102–110, 2022, doi: 10.30880/ijie.2022.14.03.011.

[8] C. Garrido-Munoz, A. Rios-Vila, and J. Calvo-Zaragoza, “Handwritten Text Recognition: A Survey,” Feb. 2025, [Online]. Available: http://arxiv.org/abs/2502.08417

[9] E. Zhang, V. A. Putra, and G. P. Kusuma, “Improving Optical Character Recognition Accuracy For Indonesia Identification Card Using Generative Adversarial Network,” J Theor Appl Inf Technol, vol. 100, no. 8, 2022, [Online]. Available: www.jatit.org

[10] A. Pal and A. Mustafi, “Vartani Spellcheck-Automatic Context-Sensitive Spelling Correction of OCR-generated Hindi Text Using BERT and Levenshtein Distance.”

[11] M. Flores, D. Valiente, M. Alfaro, M. Fabregat-Jaén, and L. Payá, “Evaluation of Open-Source OCR Libraries for Scene Text Recognition in the Presence of Fisheye Distortion,” in Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics, SCITEPRESS - Science and Technology Publications, 2024, pp. 133–140. doi: 10.5220/0012927600003822.

[12] M. R. Batisya and K. Jevanda BS, “Implementasi Algoritma Levenshtein Distance Untuk Misspelled Word Pada Pencarian Lagu Melayu,” Jurnal Informatika, vol. 10, no. 1, pp. 72–78, Mar. 2023, doi: 10.31294/inf.v10i1.15208.

[13] S. A. Nugroho et al., “Rancang Bangun Sistem Deteksi Label Kardus Berbasis Model Kecerdasan Buatan YOLO dan EasyOCR serta ESP32-CAM 190 Rancang Bangun Sistem Deteksi Label Kardus Berbasis Model Kecerdasan Buatan YOLO dan EasyOCR serta ESP32-CAM.”

[14] M. Fadhel Haidar and F. Utaminingrum, “Deteksi Plat Nama Ruangan untuk Kendali Kursi Roda Pintar menggunakan YOLOv5 dan EasyOCR berbasis TX2,” 2023. [Online]. Available: http://j-ptiik.ub.ac.id

[15] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character Region Awareness for Text Detection,” Apr. 2019, [Online]. Available: http://arxiv.org/abs/1904.01941

[16] N. Haque, S. Islam, R. A. Tithy, and M. S. Uddin, “Automatic Bangla License Plate Recognition System for Low-Resolution Images,” in 2022 4th International Conference on Sustainable Technologies for Industry 4.0, STI 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/STI56238.2022.10103289.

[17] B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition,” Jul. 2015, [Online]. Available: http://arxiv.org/abs/1507.05717

[18] R. Adawiyah and N. E. Saragih, “Implementasi Algoritma Levenshtein Distance Dalam Mendeteksi Plagiarisme.”

[19] M. F. Azhri, D. Swanjaya, and R. K. Niswatin, “Penerapan Algoritma Levenshtein Distance pada Aplikasi Asisten Guru Bahasa Inggris.”

[20] M. Khalid, M. M. Yousaf, and M. U. Sadiq, “Toward Efficient Similarity Search under Edit Distance on Hybrid Architectures,” Information (Switzerland), vol. 13, no. 10, Oct. 2022, doi: 10.3390/info13100452.

[21] H. M and S. M.N, “A Review on Evaluation Metrics for Data Classification Evaluations,” International Journal of Data Mining & Knowledge Management Process, vol. 5, no. 2, pp. 01–11, Mar. 2015, doi: 10.5121/ijdkp.2015.5201.

[22] I. S. Handayanto and I. Nuryasin, “Pengujian Blackbox Decision Table pada Sistem Aplikasi Mobile Sharing Story App,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 13, no. 2, Apr. 2024, doi: 10.30591/smartcomp.v13i2.6572.

[23] M. Shania and T. Tranggono, “Analisis Usability Pada Aplikasi Shopee Menggunakan Metode System Usability Scale (SUS),” Briliant: Jurnal Riset dan Konseptual, vol. 9, no. 2, pp. 452–465, May 2024, doi: 10.28926/briliant.v9i2.1884.

[24] A. P. Sukma, R. Yusuf, and R. H. Dai, “Analisis Pengukuran Usability Sistem Informasi Manajemen Baznas (Simba) Menggunakan Metode System Usability Scale (SUS),” vol. 3, no. 2, 2023.

[25] A. Aditya Santika, T. Hamonangan Saragih, D. Kartini, and R. Ramadhani, “Penerapan Skala Likert Pada Klasifikasi Tingkat Kepuasan Pelanggan Agen BRILink Menggunakan Random Forest,” vol. 11, no. 3, doi: 10.26418/justin.v11i3.

[26] D. Irawan, D. Syamsuar, T. B. Kurniawan, and M. Akbar, “Analisis Usability Sistem Informasi Akademik (Studi Kasus SISFO Universitas PGRI Palembang),” JSI : Jurnal Sistem Informasi (E-Journal), vol. 13, no. 2, p. 2021, [Online]. Available: http://ejournal.unsri.ac.id/index.php/jsi/index

[27] J. Brooke, “SUS: A quick and dirty usability scale.” [Online]. Available: https://www.researchgate.net/publication/228593520

Downloads

Published

2025-08-05

How to Cite

[1]
K. Apriana, I Made Agus Dwi Suarjaya, and Ni Kadek Dwi Rusjayanthi, “Esscore: An OCR-Based Android App for Scoring Short Handwritten Answer Using Levenshtein Distance”, JAIC, vol. 9, no. 4, pp. 1383–1393, Aug. 2025.

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.