Multiclass Sentiment Analysis of Electric Vehicle Incentive Policies Using IndoBERT and DeBERTa Algorithms

Authors

  • Muhammad Bayu Nugroho Universitas Islam Nahdlatul Ulama Jepara
  • Akhmad Khanif Zyen Universitas Islam Nahdlatul Ulama Jepara
  • Nur Aeni Widiastuti Universitas Islam Nahdlatul Ulama Jepara

DOI:

https://doi.org/10.30871/jaic.v9i3.9511

Keywords:

Sentiment Analysis, IndoBERT, DeBERTa, Electric Vehicle, Random Oversampling

Abstract

The electric vehicle (EV) incentive policy in Indonesia has generated various public reactions, particularly on social media platforms. This study aims to classify public sentiment using the IndoBERT and DeBERTa transformer models. A total of 6,758 comments were collected from YouTube, filtered, preprocessed, and labeled into three sentiment categories: positive, negative, and neutral. From this, 1,711 clean data points were used and analyzed in two phases: before and after applying the Random Oversampling technique to address class imbalance. Model performance was evaluated using accuracy, precision, recall, F1-score, and training time. In the initial phase, IndoBERT achieved 96% accuracy with 603.71 seconds of training time, while DeBERTa reached 93% in 439.19 seconds. After balancing and applying 5-Fold Cross Validation, IndoBERT maintained 96% accuracy with balanced metric distribution, while DeBERTa recorded 93% accuracy. IndoBERT performed better in recognizing neutral sentiment, whereas DeBERTa was more time-efficient. These results highlight the effectiveness of local transformer models and data balancing techniques in improving sentiment classification performance on imbalanced datasets.

Downloads

Download data is not yet available.

References

[1] R. Merdiansah And A. Ali Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan Indobert,” Jurnal Ilmu Komputer Dan Sistem Informasi (Jikomsi, Vol. 7, No. 1, Pp. 221–228, 2024.

[2] M. H. Albab, A. D. F. Sari, S. N. Asrizal, And R. Kurniawan, “Analisis Sentimen Penggunaan Kendaraan Listrik Terhadap Lingkungan Di Indonesia Dengan Pendekatan Machine Learning,” Prosiding Seminar Nasional Sains Data, 2024.

[3] F. Mulya, S. Putra, S. Rakasiwi, And N. Ariyanto, “Twitter Sentiment Classification Towards Telecommunication Provider Users In Indonesia,” Journal Of Applied Informatics And Computing (Jaic), Vol. 9, No. 2, Pp. 314–321, Apr. 2025.

[4] J. Ye, R. Biswas, And N. Mishra, “Deberta-Based Social Media Sentiment Analysis: A Cryptocurrency Case Study,” 2024 International Conference On Intelligent Computing And Emerging Communication Technologies (Icec), Pp. 1–5, 2024.

[5] L. N. Wakhidah, A. K. Zyen, And B. B. Wahono, “Evaluation Of Telecommunication Customer Churn Classification With Smote Using Random Forest And Xgboost Algorithms,” Journal Of Applied Informatics And Computing, Vol. 9, No. 1, Pp. 89–95, 2025.

[6] M. I. Alhari, O. N. Pratiwi, And M. Lubis, “Sentiment Analysis Of The Public Perspective Electric Cars In Indonesia Using Support Vector Machine Algorithm,” In 2022 International Conference Of Science And Information Technology In Smart Administration (Icsintesa), 2022, Pp. 155–160. Doi: 10.1109/Icsintesa56431.2022.10041604.

[7] S. Alfarizi, D. Gunawan, H. Basri, A. R. Mulyawan, And N. Ichsan, “Optimasi Naïve Bayes Menggunakan Seleksi Fitur Forward Selection Untuk Analisis Sentimen Kendaraan Listrik,” Jurnal Teknik Komputer, 2024.

[8] A. Pratama And M. Rosyda, “Analisis Sentimen Dalam Aplikasi X Terhadap Pengungsi Rohingya Dengan Lstm,” Skanika: Sistem Komputer Dan Teknik Informatika, Vol. 8, No. 1, P. 95, 2025.

[9] M. Haris, A. Suharso, And E. H. Nurkifli, “Analisis Sentimen Pada Game Efootball Di Google Play Store Menggunakan Algoritma Indobert,” Jati (Jurnal Mahasiswa Teknik Informatika), Vol. 8, No. 6, Pp. 12108–12121, 2024.

[10] A. Karimah, G. Dwilestari, And M. Mulyawan, “Analisis Sentimen Komentar Video Mobil Listrik Di Platform Youtube Dengan Metode Naive Bayes,” Jati (Jurnal Mahasiswa Teknik Informatika), 2024.

[11] R. M. R. W. P. K. Atmaja And W. Yustanti, “Analisis Sentimen Customer Review Aplikasi Ruang Guru Dengan Metode Bert (Bidirectional Encoder Representations From Transformers),” Jeisbi (Journal Of Emerging Information Systems And Business Intelligence), Vol. 02, No. 3, P. 2021, Jul. 2021.

[12] N. Ayuningtyas And W. Yustanti, “Semi-Supervised Learning Pada Pelabelan Dalam Klasifikasi Multi-Label Data Teks,” Journal Of Informatics And Computer Science, Vol. 06, No. 1, Pp. 240–248, 2024.

[13] S. M. Fauzi, R. Ramdani, And R. Cahyana, “Analisis Sentimen Pemilu Dalam Text Mining Terhadap Hasil Real Count 2024,” Indonesian Journal Of Computer Science And Engineering, 2024.

[14] F. Nur Salsabilla And A. Witanti, “Analisis Sentimen Akhir Masa Jabatan Presiden Jokowi Pada Media Sosial X Menggunakan Naïve Bayes,” Skanika: Sistem Komputer Dan Teknik Informatika, Vol. 8, No. 1, Pp. 106–115, 2025.

[15] L. R. Aini, E. Nurfadhilah, A. Jarin, A. Santosa, And M. T. Uliniansyah, “Enhancing Sentiment Analysis Models Through Multi-Technique Data Augmentation: A Study With Indobert,” 2023 International Conference On Computer, Control, Informatics And Its Applications (Ic3ina), Pp. 137–142, 2023, Doi: 10.1109/Ic3ina60834.2023.10285775.

[16] I. A. Rahma And L. H. Suadaa, “Penerapan Text Augmentation Untuk Mengatasi Data Yang Tidak Seimbang Pada Klasifikasi Teks Berbahasa Indonesia,” Jurnal Teknologi Informasi Dan Ilmu Komputer, Vol. 10, No. 6, Pp. 1329–1340, Dec. 2023, Doi: 10.25126/Jtiik.2023107325.

[17] S. Diantika, “Penerapan Teknik Random Oversampling Untuk Mengatasi Imbalance Class Dalam Klasifikasi Website Phishing Menggunakan Algoritma Lightgbm,” Jati (Jurnal Mahasiswa Teknik Informatika), 2023.

[18] T. Ridwansyah, “Klik: Kajian Ilmiah Informatika Dan Komputer Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” Klik: Kajian Ilmiah Informatika Dan Komputer, Vol. 2, No. 5, Pp. 178–185, 2022, [Online]. Available: Https://Djournals.Com/Klik

[19] Anugerah Simanjuntak Et Al., “Research And Analysis Of Indobert Hyperparameter Tuning In Fake News Detection,” Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, Vol. 13, No. 1, Pp. 60–67, Feb. 2024, Doi: 10.22146/Jnteti.V13i1.8532.

[20] R. Mas, R. W. Panca, K. Atmaja1, And W. Yustanti2, “Analisis Sentimen Customer Review Aplikasi Ruang Guru Dengan Metode Bert (Bidirectional Encoder Representations From Transformers),” Journal Of Emerging Information Systems And Business Intelligence (Jeisbi), Vol. 02, No. 03, Pp. 55–62, 2021.

[21] R. N. Tanaja, A. Widjaya, A. Agung, S. Gunawan, K. Eka, And Setiawan, “Evaluating Public Opinion On The 2024 Indonesian Presidential Election Candidate: An Indobert Approach To Twitter Sentiment Analysis,” 2024 10th International Conference On Smart Computing And Communication (Icscc), Pp. 88–94, 2024, Doi: 10.1109/Icscc62041.2024.10690796.

Downloads

Published

2025-06-18

How to Cite

[1]
Muhammad Bayu Nugroho, Akhmad Khanif Zyen, and Nur Aeni Widiastuti, “Multiclass Sentiment Analysis of Electric Vehicle Incentive Policies Using IndoBERT and DeBERTa Algorithms”, JAIC, vol. 9, no. 3, pp. 910–919, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.