Hamming Code in JPEG Image Steganography within the Discrete Cosine Transform Domain

Authors

  • Dian Zulfikar UIN Raden Intan Lampung
  • Hermanto Hermanto Sistem Informasi, Fakultas Sains dan Teknologi UIN Raden Intan Lampung

DOI:

https://doi.org/10.30871/jaic.v9i3.9387

Keywords:

Dicrete Cosine Transform, Hamming Code, JPEG, Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM)

Abstract

This study proposes a novel JPEG image steganography method that combines Least Significant Bit (LSB) embedding in the Discrete Cosine Transform (DCT) domain with Hamming Code (2k − 1, 2k − k − 1) to minimize the number of modified DCT coefficients. Experiments were conducted on images with varying resolutions (512×512, 1024×1024, 2048×2048) and JPEG quality factor of 75, where PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) parameters are used to measure the quality and similarity between the original image and the stego image. The method achieved an embedding capacity of up to 524,288 bits, with an average PSNR of 39–41 dB and SSIM above 0.98. Compared to conventional techniques such as JSteg and F5, the proposed approach demonstrates improved embedding capacity, better visual quality, and higher resistance to statistical steganalysis, making it suitable for secure and efficient data hiding applications.

Downloads

Download data is not yet available.

References

[1] N. F. Johnson and S. Katzenbeisser, A survey of steganographic techniques. Artech House, 2000.

[2] C. Yu, “Reversible Data Hiding with Hierarchical Embedding for Encrypted Images,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 2, pp. 451–466, 2022, doi: 10.1109/TCSVT.2021.3062947.

[3] M. Maulana, S. Widianto, and A. Sasongko, “Steganography based on the B217AN Algorithm for secret messages on flip horizontal and resize image,” World J. Adv. Eng. Technol. Sci., vol. 9, pp. 17–28, May 2023, doi: 10.30574/wjaets.2023.9.1.0133.

[4] M. Magdy, “Security of medical images for telemedicine: a systematic review,” Multimed. Tools Appl., vol. 81, no. 18, pp. 25101–25145, 2022, doi: 10.1007/s11042-022-11956-7.

[5] X. Zhang, S. Wang, and Y. Zhang, “A survey on image steganography and steganalysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 3, pp. 1042–1057, 2021, doi: 10.1109/TCSVT.2020.2994567.

[6] B. K. Pandey, “Effective and Secure Transmission of Health Information Using Advanced Morphological Component Analysis and Image Hiding,” Lecture Notes in Computational Vision and Biomechanics, vol. 37. pp. 223–230, 2023. doi: 10.1007/978-981-19-0151-5_19.

[7] R. Chandramouli, M. Kharrazi, and N. Memon, “Image Steganography and Steganalysis: Concepts and Practice BT - Digital Watermarking,” 2004, pp. 35–49.

[8] Z. Zhou, “Secret-to-Image Reversible Transformation for Generative Steganography,” IEEE Trans. Dependable Secur. Comput., vol. 20, no. 5, pp. 4118–4134, 2023, doi: 10.1109/TDSC.2022.3217661.

[9] J. Fridrich, M. Goljan, and R. Du, “Reliable detection of LSB steganography in color and grayscale images BT - Proceedings of the 2001 Workshop on Multimedia and Security: New Challenges,” 2001, pp. 27–30.

[10] A. Westfeld, “F5—A steganographic algorithm BT - Information Hiding: 4th International Workshop Proceedings,” 2001, vol. 2137, pp. 289–302.

[11] Z. Qian, J. Zhang, and X. Wang, “Adaptive steganography based on generative adversarial networks,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 1234–1245, 2023, doi: 10.1109/TIFS.2023.3245678.

[12] N. Provos and P. Honeyman, “Hide and seek: An introduction to steganography,” IEEE Secur. Priv., vol. 1, no. 3, pp. 32–44, 2003.

[13] T. Srinivasarao, A. Yannam, B. Markapudi, K. Chaduvula, and A. Allada, “A Smart Strategy for Data Hiding using Cryptography and Steganography,” J. Sci. Ind. Res. (India)., vol. 82, no. 5, pp. 546–551, 2023, doi: 10.56042/jsir.v82i05.1090.

[14] X. Liu, “Image Disentanglement Autoencoder for Steganography without Embedding,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2022. pp. 2293–2302, 2022. doi: 10.1109/CVPR52688.2022.00234.

[15] J. Tan, “Channel Attention Image Steganography With Generative Adversarial Networks,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 2, pp. 888–903, 2022, doi: 10.1109/TNSE.2021.3139671.

[16] S. Wu, “A Novel Convolutional Neural Network for Image Steganalysis with Shared Normalization,” IEEE Trans. Multimed., vol. 22, no. 1, pp. 256–270, 2020, doi: 10.1109/TMM.2019.2920605.

[17] H. M. Pandey, “Secure medical data transmission using a fusion of bit mask oriented genetic algorithm, encryption and steganography,” Futur. Gener. Comput. Syst., vol. 111, pp. 213–225, 2020, doi: 10.1016/j.future.2020.04.034.

[18] R. Hu, “CNN prediction based reversible data hiding,” IEEE Signal Process. Lett., vol. 28, pp. 464–468, 2021, doi: 10.1109/LSP.2021.3059202.

[19] L. Singh, “Secure data hiding techniques: a survey,” Multimed. Tools Appl., vol. 79, no. 23, pp. 15901–15921, 2020, doi: 10.1007/s11042-018-6407-5.

[20] Z. Yin, “Reversible Data Hiding in JPEG Images with Multi-Objective Optimization,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 8, pp. 2343–2352, 2020, doi: 10.1109/TCSVT.2020.2969463.

[21] A. K. Sahu, “Digital image steganography and steganalysis: A journey of the past three decades,” Open Computer Science, vol. 10, no. 1. pp. 296–342, 2020. doi: 10.1515/comp-2020-0136.

[22] X. Wu, “SSTNet: Detecting Manipulated Faces Through Spatial, Steganalysis and Temporal Features,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2020. pp. 2952–2956, 2020. doi: 10.1109/ICASSP40776.2020.9053969.

[23] Y. Yousfi, “Improving EfficientNet for JPEG Steganalysis,” IH and MMSec 2021 - Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security. pp. 149–157, 2021. doi: 10.1145/3437880.3460397.

[24] C. C. Chang, “Adversarial Learning for Invertible Steganography,” IEEE Access, vol. 8, pp. 198425–198435, 2020, doi: 10.1109/ACCESS.2020.3034936.

[25] S. Bernard, “Explicit Optimization of min max Steganographic Game,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 812–823, 2021, doi: 10.1109/TIFS.2020.3021913.

[26] W. Lu, “Secure Robust JPEG Steganography Based on AutoEncoder with Adaptive BCH Encoding,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 7, pp. 2909–2922, 2021, doi: 10.1109/TCSVT.2020.3027843.

[27] S. Tan, “CALPA-NET: Channel-Pruning-Assisted Deep Residual Network for Steganalysis of Digital Images,” IEEE Transactions on Information Forensics and Security, vol. 16. pp. 131–146, 2021. doi: 10.1109/TIFS.2020.3005304.

[28] A. Z. Abadin, R. Sulaiman, and M. K. Hasan, “Randomization Strategies in Image Steganography Techniques: A Review,” Comput. Mater. Contin., vol. 80, no. 2, pp. 3139–3171, 2024, doi: 10.32604/cmc.2024.050834.

[29] A. S. Ansari, “A Review on the Recent Trends of Image Steganography for VANET Applications,” Comput. Mater. Contin., vol. 78, no. 3, pp. 2865–2892, 2024, doi: 10.32604/cmc.2024.045908.

[30] A. Alenizi, M. S. Mohammadi, A. A. Al-Hajji, and A. S. Ansari, “A Review of Image Steganography Based on Multiple Hashing Algorithm,” Comput. Mater. Contin., vol. 80, no. 2, pp. 2463–2494, 2024, doi: 10.32604/cmc.2024.051826.

Downloads

Published

2025-06-17

How to Cite

[1]
D. Zulfikar and H. Hermanto, “Hamming Code in JPEG Image Steganography within the Discrete Cosine Transform Domain”, JAIC, vol. 9, no. 3, pp. 868–875, Jun. 2025.

Issue

Section

Articles

Similar Articles

<< < 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.