Ensemble Voting Method for Phonocardiogram Heart Signal Classification Using FFT Features

Authors

  • Adisaputra Zidha Noorizki Universitas Dinamika Surabaya
  • Heri Pratikno Universitas Dinamika Surabaya
  • Weny Indah Kusumawati Universitas Dinamika Surabaya

DOI:

https://doi.org/10.30871/jaic.v8i2.8704

Keywords:

Phonocardiogram, Ensemble learning, FFT features, Soft voting, LSTM, GRU, TCN

Abstract

Heart disease is still one of the leading causes of death worldwide, hence the need for effective diagnostic tools. Phonocardiogram (PCG) signals have been explored as a complementary approach to electrocardiogram (ECG) to detect cardiac abnormalities. This research investigates the classification of PCG signals using Fast Fourier Transform (FFT) features and deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Temporal Convolutional Network (TCN). Hyperparameter tuning, particularly learning rate adjustment, is applied to optimize the performance of the models. The results show that the GRU and TCN models outperform the LSTM, achieving up to 92% accuracy at a learning rate of 0.0001. Ensemble learning with soft voting was also applied to combine the strengths of each model. Although the ensemble model showed strong performance with 92% accuracy and ROC AUC of 0.9636, it did not provide significant improvement over the base model. This finding highlights the importance of hyperparameter tuning in model optimization, with GRU and TCN showing slightly better performance in the time series classification task. This study concludes that ensemble learning offers stability but does not significantly improve classification accuracy beyond a well-tuned base model.

Downloads

Download data is not yet available.

References

S. Handayani, Analogi dan Fisiologi Tubuh Manusia. Media Sains Indonesia dan Penulis, 2021. Accessed: Jul. 01, 2024. [Online]. Available: http://repository.stikes-yogyakarta.ac.id/id/eprint/24/3/Buku%20Anatomi%20dan%20Fisiologi%20Tubuh%20Manusia.pdf

O. Maria Pujiastuti, I. Hizkia, W. Munthe, and S. Santa Elisabeth Medan, "Gambaran Tekanan Darah Pada Masyarakat Yang Mengikuti Senam Jantung Sehat Di Rambung Merah Tahun 2022," 2023. [Online]. Available: http://bajangjournal.com/index.php/JCI

WHO and Q. Mattingly, "Cardiovascular diseases." Accessed: Jul. 03, 2024. [Online]. Available: https://www.who.int/health-topics/cardiovascular-diseases

M. Alwi, A. Amal, D. Zulherman, R. Widadi, and P. Korespondensi, "Klasifikasi Sinyal Phonocardiogram Menggunakan Short Time Fourier Transform Dan Convolutional Neural Network," Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 2, pp. 237"“244, Apr. 2023, doi: 10.25126/jtiik.2023105424.

Kemenkes, "Satu dari Tiga Kematian Disebabkan oleh Jantung, Ayo Cegah serangan jantung." Accessed: Jul. 03, 2024. [Online]. Available: https://upk.kemkes.go.id/new/satu-dari-tiga-kematian-disebabkan-oleh-jantung-ayo-cegah-serangan-jantung

J. Prince et al., "Deep Learning Algorithms to Detect Murmurs Associated With Structural Heart Disease," J Am Heart Assoc, vol. 12, no. 20, Oct. 2023, doi: 10.1161/JAHA.123.030377.

M. Wang, B. Guo, Y. Hu, Z. Zhao, C. Liu, and H. Tang, "Transfer Learning Models for Detecting Six Categories of Phonocardiogram Recordings," J Cardiovasc Dev Dis, vol. 9, no. 3, Mar. 2022, doi: 10.3390/jcdd9030086.

H. Li et al., "A fusion framework based on multi-domain features and deep learning features of phonocardiogram for coronary artery disease detection," Comput Biol Med, vol. 120, May 2020, doi: 10.1016/j.compbiomed.2020.103733.

Y. Triyani, W. Khabzli, N. Harpawi, and W. Styorini, "Computer Aided Diagnosis (CAD) untuk Phonocardiogram (PCG) Berbasis Fast Fourier Tranform," Jurnal ELEMENTER, vol. 7, pp. 66"“75, May 2021. Available: https://jurnal.pcr.ac.id/index.php/elementer/

S. Y. Lee, P. W. Huang, J. R. Chiou, C. Tsou, Y. Y. Liao, and J. Y. Chen, "Electrocardiogram and Phonocardiogram Monitoring System for Cardiac Auscultation," IEEE Trans Biomed Circuits Syst, vol. 13, no. 6, pp. 1471"“1482, Dec. 2019, doi: 10.1109/TBCAS.2019.2947694.

S. Raschka, J. Patterson, and C. Nolet, "Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence," Apr. 01, 2020, MDPI AG. doi: 10.3390/info11040193.

M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan, "Ensemble deep learning: A review," Oct. 01, 2022, Elsevier Ltd. doi: 10.1016/j.engappai.2022.105151.

A. R. Barzani, P. Pahlavani, and O. Ghorbanzadeh, "Ensembling Of Decision Trees, KNN, And Logistic Regression With Soft-Voting Method For Wildfire Susceptibility Mapping," in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus Publications, Jan. 2023, pp. 647"“652. doi: 10.5194/isprs-annals-X-4-W1-2022-647-2023.

M. Alkhodari and L. Fraiwan, "Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings," Comput Methods Programs Biomed, vol. 200, Mar. 2021, doi: 10.1016/j.cmpb.2021.105940.

G. D. Clifford et al., "Classification of normal/abnormal heart sound recordings: The PhysioNet/Computing in Cardiology Challenge 2016," in Computing in Cardiology, IEEE Computer Society, Mar. 2016, pp. 609"“612. doi: 10.22489/cinc.2016.179-154.

M. Boulares, R. Alotaibi, A. Almansour, and A. Barnawi, "Cardiovascular disease recognition based on heartbeat segmentation and selection process," Int J Environ Res Public Health, vol. 18, no. 20, Oct. 2021, doi: 10.3390/ijerph182010952.

T. H. Chowdhury, K. N. Poudel, and Y. Hu, "Time-Frequency Analysis, Denoising, Compression, Segmentation, and Classification of PCG Signals," IEEE Access, vol. 8, pp. 160882"“160890, 2020, doi: 10.1109/ACCESS.2020.3020806.

A. Meliboyev, J. Alikhanov, W. Kim, M. Azizjon, and A. Jumabek, "1D CNN Based Network Intrusion Detection with Normalization on Imbalanced Data," 2020. [Online]. Available: https://www.researchgate.net/publication/339641880

A. Hasan and Z. Bahri, "Comparative Study on Heart Anomalies Early Detection Using Phonocardiography (PCG) Signals," International Journal of Computing and Digital Systems, vol. 14, no. 1, pp. 643"“655, Oct. 2023, doi: 10.12785/ijcds/140180.

S. Lucarini, M. V. Upadhyay, and J. Segurado, "FFT based approaches in micromechanics: Fundamentals, methods and applications," Mar. 01, 2022, IOP Publishing Ltd. doi: 10.1088/1361-651X/ac34e1.

T. G.S., Y. Hariprasad, S. S. Iyengar, N. R. Sunitha, P. Badrinath, and S. Chennupati, "An extension of Synthetic Minority Oversampling Technique based on Kalman filter for imbalanced datasets," Machine Learning with Applications, vol. 8, p. 100267, Jun. 2022, doi: 10.1016/j.mlwa.2022.100267.

S. Wang, Y. Dai, J. Shen, and J. Xuan, "Research on expansion and classification of imbalanced data based on SMOTE algorithm," Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-03430-5.

A. Rehmer and A. Kroll, "On the vanishing and exploding gradient problem in Gated Recurrent Units," Berlin, Germany, Jul. 2020.

J. Wang, X. Qiang, Z. Ren, H. Wang, Y. Wang, and S. Wang, "Time-Series Well Performance Prediction Based on Convolutional and Long Short-Term Memory Neural Network Model," Energies (Basel), vol. 16, no. 1, Jan. 2023, doi: 10.3390/en16010499.

Z. Wu et al., "Predicting Groundwater Level Based on Machine Learning: A Case Study of the Hebei Plain," Water (Switzerland), vol. 15, no. 4, Feb. 2023, doi: 10.3390/w15040823.

A. K. Shaikh, A. Nazir, N. Khalique, A. S. Shah, and N. Adhikari, "A new approach to seasonal energy consumption forecasting using temporal convolutional networks," Results in Engineering, vol. 19, Sep. 2023, doi: 10.1016/j.rineng.2023.101296.

S. Li, W. Zhang, and P. Wang, "TS2ARCformer: A Multi-Dimensional Time Series Forecasting Framework for Short-Term Load Prediction," Energies (Basel), vol. 16, no. 15, Aug. 2023, doi: 10.3390/en16155825.

J. M. A. S. Dachi and P. Sitompul, "Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit," Jurnal Riset Rumpun Matematika dan Ilmu Pengetahuan Alam, vol. 2, no. 2, pp. 87"“103, Oct. 2023, doi: 10.55606/jurrimipa.v2i2.1336.

I. Saluza and H. Hartati, "Neural Network Optimization Using Ensemble Method In Forecasting Financial Data," Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 10, no. 4, p. 381, Dec. 2022, doi: 10.26418/justin.v10i4.50771.

Y. Mahendra Awaludin and F. Budiman, "Optimasi Analisis Kesuburan Tanah Dengan Pendekatan Soft Voting Ensemble," Jurnal SIMETRIS, vol. 14, no. 2, 2023.

A. Z. Noorizki and W. I. Kusumawati, "Perbandingan Performa Algoritma VGG16 Dan VGG19 Melalui Metode CNN Untuk Klasifikasi Varietas Beras," Journal of Computer, Electronic, and Telecommunication, vol. 4, no. 2, Dec. 2023, doi: 10.52435/complete.v4i2.387.

Downloads

Published

2024-11-25

How to Cite

[1]
A. Z. Noorizki, H. Pratikno, and W. I. Kusumawati, “Ensemble Voting Method for Phonocardiogram Heart Signal Classification Using FFT Features”, JAIC, vol. 8, no. 2, pp. 605–615, Nov. 2024.

Most read articles by the same author(s)