Analisis Fitur HRV pNN50 pada Sinyal Psikofisiologis Marah Manusia
Abstract
Affective Computing dan Affective medicine dapat menjadi bidang yang menggabungkan teknik komputasi, ilmu kesehatan dan psikologi. Bidang ini dikembangkan untuk mempelajari dan mengkomputasi psikologi manusia dengan menggunakan metode matematika. Dalam paper ini, kami meneliti sinyal psikofisiologis Marah Manusia dengan menggunakan fitur pNN50 Heart Rate Variability. Dalam penelitian ini kami menggunakan sensor EKG untuk merekan reaksi jantung manusia terhadap stimuli video marah yang dipertunjukkan ke mereka. Sinyal tersebut akan dianalisis dengan menggunakan aplikasi kubiosHRV untuk mendapat nilai pNN50 dari masing-masing partisipan. Hasil penelitina ini menunjukkan bahwa ada perbedaan nilai pNN50 sebelum dan sesudah mendapatkan Stimuli Video. Hal ini menunjukkan bahwa pNN50 dapat digunakan sebagai fitur untuk membedakan sinyal jantung manusia pada saat marah dan normal.
Downloads
References
R. W. Picard, Affective computing. MIT press, 2000.
R. Bushko, “Affective medicine: Technology with emotional intelligence,” Future of Health Technology, vol. 80, hlm. 69, 2002.
A. Luneski, E. Konstantinidis, dan P. Bamidis, “Affective medicine,” Methods of information in medicine, vol. 49, no. 03, hlm. 207–218, 2010.
M. Egger, M. Ley, dan S. Hanke, “Emotion recognition from physiological signal analysis: A review,” Electronic Notes in Theoretical Computer Science, vol. 343, hlm. 35–55, 2019.
H.-W. Guo, Y.-S. Huang, C.-H. Lin, J.-C. Chien, K. Haraikawa, dan J.-S. Shieh, “Heart rate variability signal features for emotion recognition by using principal component analysis and support vectors machine,” 2016, hlm. 274–277.
M. T. Valderas, J. Bolea, P. Laguna, M. Vallverdú, dan R. Bailón, “Human emotion recognition using heart rate variability analysis with spectral bands based on respiration,” 2015, hlm. 6134–6137.
H. Ferdinando, T. Seppänen, dan E. Alasaarela, “Comparing features from ECG pattern and HRV analysis for emotion recognition system,” 2016, hlm. 1–6.
J. Zhu, L. Ji, dan C. Liu, “Heart rate variability monitoring for emotion and disorders of emotion,” Physiological measurement, vol. 40, no. 6, hlm. 064004, 2019.
F. Nazaraghaei dan K. K. Bhat, “Physiological impacts of Ajapajapa Yogic Meditation on HRV index, RMSSD, PNN50, Heart Rate and GSR following three-month training course in comparison to FG Meditation,” Journal of Advanced Medical Sciences and Applied Technologies, vol. 5, no. 1, 2020.
Z. Hua, C. Chen, R. Zhang, G. Liu, dan W. Wen, “Diagnosing various severity levels of congestive heart failure based on long-term HRV signal,” Applied Sciences, vol. 9, no. 12, hlm. 2544, 2019.
Z. Qu, Q. Liu, dan C. Liu, “Classification of congestive heart failure with different New York Heart Association functional classes based on heart rate variability indices and machine learning,” Expert Systems, vol. 36, no. 3, hlm. e12396, 2019.
R. R. Sharma, A. Kumar, R. B. Pachori, dan U. R. Acharya, “Accurate automated detection of congestive heart failure using eigenvalue decomposition based features extracted from HRV signals,” Biocybernetics and Biomedical Engineering, vol. 39, no. 2, hlm. 312–327, 2019.
L. D. Rumpa, A. D. Wibawa, M. H. Purnomo, dan H. Tulak, “Validating video stimulus for eliciting human emotion: A preliminary study for e-health monitoring system,” 2015, hlm. 208–213.
L. D. Rumpa, “Validasi stimuli audiovisual emosi sedih manusia: Studi preliminari e-health monitoring system,” Journal Dynamic Saint, vol. 2, no. 1, 2016.
L. D. Rumpa, A. Toding, W. Jefriyanto, dan R. O. Sapulette, “Heart Rate Variability (HRV) during anger emotion stimulation: features for affective,” 2021, vol. 1088, no. 1, hlm. 012103.
“E-Health: Low Cost Sensors for Early Detection of Childhood Disease,” Libelium. https://www.libelium.com/libeliumworld/success-stories/e-health-low-cost-sensors-for-early-detection-of-childhood-disease-inspire-project-hope/ (diakses 9 November 2022).
J. Sztajzel, “Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system,” Swiss medical weekly, vol. 134, no. 35–36, hlm. 514–522, 2004.
G. A. Alvares, D. S. Quintana, I. B. Hickie, dan A. J. Guastella, “Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis,” Journal of psychiatry and neuroscience, vol. 41, no. 2, hlm. 89–104, 2016.
Copyright (c) 2022 Lantana Dioren Rumpa, Iindarda S. Panggalo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).