Application of Decision Tree Algorithm for Edible Mushroom Classification

  • Afika Rianti Universitas Pendidikan Indonesia
  • Taufik Ridwan Universitas Pendidikan Indonesia
  • Suprih Widodo Universitas Pendidikan Indonesia
  • Rian Andrian Universitas Pendidikan Indonesia
Keywords: Classification, Decision Tree Algorithm, Edible Mushroom, Overfitting, Random Sampling Techniques

Abstract

The purpose of this research is to classify the mushroom based on its characteristic to be in an edible class or poisonous one using the Decision Tree Algorithm. The result showed that odor is the most important attribute to classify the mushroom. Mushrooms which have almond and anise odors are edible, while the rest of it, such as pungent, foul, creosote, fishy, spicy, and musty are poisonous which means they can't be eaten. For mushrooms that have no odor, there are some attributes to be checked such as spore-print-color, gill-size, gill-spacing, and population. At first, overfitting happened. To overcome this, the researcher used Random Sampling Techniques until got better accuracy. The most accurate sample is 99,9% using sample 6 or 2000 data.

Downloads

Download data is not yet available.

References

M. N. Owaid, M. M. Muslat, and W. C. Tan, ‘First collection and identification of wild mushrooms in western Iraq’, J. Adv. Lab. Res. Biol., vol. 5, no. 2, pp. 29–34, 2014.

Anonim, “2nd Afghan Boy Dies of Mushroom Poisoning in Poland” Bloomberg.com, 03-Sep-2021. [Online]. Available: https://www.bloomberg.com/news/articles/2021-09-03/poland-probes-deadly-mushroom-poisoning-of-afghan-evacuees. [Accessed: 24-Dec-2021].

Anonim, “Woman Dies after Consuming ‘Poisonous’ Mushroom” Thesangaiexpress.com/, 03-Sep-2021. [Online]. Available: https://www.thesangaiexpress.com/Encyc/2021/6/14/Our-CorrespondentSenapati-Jun-14-In-an-apparent-case-of-consuming-poisonous-mushroom-a-woman-w.html. [Accessed: 24-Dec-2021].

Singh, Shipra, “How to Know a Mushroom is Edible or Poisonous?” Krishijagran.com, 03-Sep-2021. [Online]. Available: https://krishijagran.com/agripedia/how-to-know-a-mushroom-is-edible-or-poisonous. [Accessed: 24-Dec-2021].

Lima, A & Fortes, Renata & Novaes, Maria Rita & Percario, Sandro. (2012). Poisonous mushrooms: a review of the most common intoxications. Nutrición hospitalaria : organo oficial de la Sociedad Española de Nutrición Parenteral y Enteral. 27. 402-8. 10.1590/S0212-16112012000200009.

Hand, D. J. (2007). Principles of data mining. Drug safety, 30(7), 621-622.

M. Y. Prasetyo, U. Darusalam, and B. Benrahman, ‘Web-Based Expert System for Diagnosis of Pigeon Disease by Naïve Bayes Method’, J. Appl. Inform. Comput., vol. 4, no. 2, Art. no. 2, Dec. 2020, doi: 10.30871/jaic.v4i2.2706.

M. A. Hasanah, S. Soim, and A. S. Handayani, ‘Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir’, J. Appl. Inform. Comput. JAIC, vol. 5, no. 2, Art. no. 2, Oct. 2021, doi: 10.30871/jaic.v5i2.3200.

B. Siswoyo, ‘MultiClass Decision Forest Machine Learning Artificial Intelligence’, J. Appl. Inform. Comput., vol. 4, no. 1, Art. no. 1, Jan. 2020, doi: 10.30871/jaic.v4i1.1155.

P. Prasetyawan, I. Ahmad, R. I. Borman, Y. A. Pahlevi, and D. E. Kurniawan, ‘Classification of the Period Undergraduate Study Using Back-propagation Neural Network’, 2018, pp. 1–5.

Y. Rokhayati, N. Z. Jannah, S. Irawan, and D. E. Kurniawan, ‘Decision Determination of Hinterland Selection Using Analytical Network Process’, in 2019 2nd International Conference on Applied Engineering (ICAE), Oct. 2019, pp. 1–5. doi: 10.1109/ICAE47758.2019.9221825.

D. E. Kurniawan and A. Fatulloh, ‘Clustering of Social Conditions in Batam, Indonesia Using K-Means Algorithm and Geographic Information System’, Int. J. Earth Sci. Eng. IJEE, vol. 10, no. 5, pp. 1076–1080, 2017.

Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.

Pratiwi, Banu Putri, Ade Silvia Handayani, and Bachelor Degree. "Measurement of Air Quality System Performance With Wsn Technology Using Confusion Matrix." Upgris Journal of Informatics 6, no. 2 (2020).

Ni, H., Dong, X., Zheng, J., & Yu, G. (2021). An Introduction to Machine Learning in Quantitative Finance. World Scientific.

Anonim, “Mushroom Classification” Kaggle.com, 02-Dec-2016. [Online]. Available: https://www.kaggle.com/uciml/mushroom- classification [Accessed: 24-Dec-2021].

Holmes, G., & Hall, M. A. (2002). A development environment for predictive modelling in foods. International Journal of Food Microbiology, 73(2-3), 351-362.

Ying, Xue. (2019). An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series. 1168. 022022. 10.1088/1742-6596/1168/2/022022.

Gathercole, C., Ross, P.: Dynamic Training Subset Selection for Supervised Learning in Genetic Programming. In: Davidor, Y., M¨anner, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994)

Gonçalves, Ivo & Silva, Sara & B. Melo, Joana & Carreiras, Joao. (2012). Random Sampling Technique for Overfitting Control in Genetic Programming. 218-229. 10.1007/978-3-642-29139-5_19.

Published
2022-06-23
How to Cite
[1]
A. Rianti, T. Ridwan, S. Widodo, and R. Andrian, “Application of Decision Tree Algorithm for Edible Mushroom Classification”, JAIC, vol. 6, no. 1, pp. 93-97, Jun. 2022.
Section
Articles