Deteksi Microaneurysm Pada Mata Sebagai Langkah Awal Untuk Penentuan Diabetic Retinophaty Menggunakan Pengolahan Citra Digital

  • Anisa Habsari Politeknik Elektronika Negeri Surabaya
  • Tri Harsono Politeknik Elektronika Negeri Surabaya
  • Heny Yuniarti Politeknik Elektronika Negeri Surabaya
  • Rita Tjandra Politeknik Elektronika Negeri Surabaya
Keywords: Detection, Diabetic Retinopathy, Digital Image Processing, Microaneurysm


Diabetic Retinopathy is a microvascular complication of diabetes mellitus. According to WHO (World Health Organization), there are more than 347 billion people who suffer from diabetes. This disease will become the seventh leading cause of death in the world in 2030. Based on research in Indonesia, it is estimated that there are 42.6% of diabetic retinopathy. Therefore, this final project plans a system to assist doctors in identifying diabetic retinopathy through its characteristics, namely microaneurysm. This system begins with an input retinal image from the fundus camera. Then the input will be processed in preprocessing to increase the contrast using the green channel. The next stage is segmentation. This is used to detect candidates from blood vessels and microaneurysms that use morphology operations. The next step is feature extraction, where it uses the features of glcm and white pixels detected in the image resulting from segmentation. The value of the white pixels and the values in the glcm feature are used as parameters in determining whether the classification process will be used as a determination of a Diabetic Retinopathy image or not. The success rate of the system using the SVM (Support Vector Machine) method is 88.4%.


Download data is not yet available.


D. Susetianingtias, S. Madenda, Rodiah and Fitrianingsih, "Pengolahan Citra Fundus Diabetik Retinopati Edisi 1," in Pengolahan Citra Fundus Diabetik Retinopati Edisi 1, Jakarta, Gunadarma, 2017.

A. S. Kartasasmita, "Kementrian Kesehatan Republik Indonesia," 2018. [Online]. Available: [Accessed 14 may 2020].

N. Das, N. Puhan and R. Panda, "Entropy Thresholding based Microaneurysm Detection in Fundus Images," Jurnal IEEE, 2015.

S. Kumar and B. Kumar, "Diabetic Retinopathy Detection by Extracting Area and Number of Microaneurysm from Colour Fundus Images," 5th International Conference on Signal Processing and Integrated Networks (SPIN Prosiding), pp. 359-364, 2018.

S. S. Puranik and S. Malode, "Morphology Based Approach for Microaneurysm Detection from Retinal Image," International Conference on Automatic Control and Dynamic Optimization Techniques Prociding, pp. 635-639, 2016.

C. Chen, L. Harries, A. C. Kopel, B. L. Lee, P. C. Salmonsen and A. H. Shaikh, "Houston Eye Associates," Glacial Multimedia, [Online]. Available: [Accessed 20 july 2020].

M. Santoso, T. Indriyani and R. E. Putra, "deteksi Microaneurysm pada Citra Retina Mata Menggunakan matched filter," Jurnal INTEGER, vol. ii, no. 2, pp. 59-68, 2017.

S. Ozturk and B. Akdemir, "Application of Feature Extraction and Classification Methods for Histopathological Image using GLCM, LBP, LBGLCM,GLRLM and SFTA," Science Direc Papert, pp. 40-46, 2018.

P. M. Kumar, P. K. Singh and D. Yada, "GLCM Based Feature Extraction and Medical X-RAY Image Classification using Machine Learning Techniques," Jurnal IEEE, 2019.

Opencv, "Opencv Tutorial," OPENCV, [Online].


ological_ops.html. [Accessed 29 June 2021].

I. M. Parapat, M. T. Furqon and Sutrisno, "Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. ii, no. 10, pp. 3163-3169, 2018.

How to Cite
A. Habsari, T. Harsono, H. Yuniarti, and R. Tjandra, “Deteksi Microaneurysm Pada Mata Sebagai Langkah Awal Untuk Penentuan Diabetic Retinophaty Menggunakan Pengolahan Citra Digital”, JAIC, vol. 5, no. 2, pp. 139-145, Oct. 2021.