Mendeteksi Kematangan Pada Buah Mangga Garifta Merah Dengan Transformasi Ruang Warna HSI

  • Ahmad Muslih Syafi’i Institut Teknologi Telkom Purwokerto
  • Muhammad Fajar Ahadi Institut Teknologi Telkom Purwokerto
  • Muhammad Iqbal Rasyid Institut Teknologi Telkom Purwokerto
  • Faisal Dharma Adhinata Institut Teknologi Telkom Purwokerto
  • Apri Junaidi Institut Teknologi Telkom Purwokerto
Keywords: Fruit, Garifta Mango, HSI color, Ripeness detection

Abstract

Garifta Mango is obtained from the combination of the best quality local mangoes. Garifta mango is said to have a sweeter taste variant than the quality of other types of mango. However, when choosing Red Garifta mangoes with a good level of ripeness, we are often confused. Sometimes Red Garifta mango entrepreneurs still use manual methods to distinguish the ripeness of Red Garifta mangoes. Therefore, this study carried out a systematic design using the HSI color space transformation method. We used 15 Red Garifta mangoes as test data and 30 Red Garifta mangoes as training data in the testing phase. After doing the test, we get the accuracy, precision, and recall of 15 test data, respectively 80%, 80%, and 87%. From this percentage value, it can be concluded that the method we use can be used to detect the ripeness of the Red Garifta mango fruit.

Downloads

Download data is not yet available.

References

Y. Oktavianto, Sunaryo, and A. Suryanto, “KABUPATEN KEDIRI CHARACTERIZATION OF PLANT MANGO ( Mangifera Indica L .) CANTEK , IRENG, EMPOK, JEMPOL,” J. Produksi Tanam., vol. Volume 3, no. 2, pp. 91–97, 2015.

A. Irfianti and W. B. Sunarharum, “EKSPLORASI KARAKTERISTIK KIMIA DAN FISIK SERTA KOMPONEN GULA PADA MANGGA GARIFTA (Mangifera indica),” J. Pangan dan Agroindustri, vol. 7, no. 2, pp. 47–52, 2019, doi: 10.21776/ub.jpa.2019.007.02.5.

M. D. Ariyantini, Digital Digital Repository Repository Universitas Universitas Jember Jember Staphylococcus aureus Digital Digital Repository Repository Universitas Universitas Jember Jember. 2017.

S. Jatmika and D. Purnamasari, “Rancang Bangun Alat Pendeteksi Kematangan Buah Apel Dengan Menggunakan Metode Image Processing Berdasarkan Komposisi Warna,” J. Ilm. Teknol. Inf. Asia, vol. 8, no. 1, pp. 51–58, 2014.

O. N. Shpakov and G. V. Bogomolov, “Technogenic activity of man and local sources of environmental pollution,” Stud. Environ. Sci., vol. 17, no. C, pp. 329–332, 1981, doi: 10.1016/S0166-1116(08)71924-1.

M. Swedia, Ericks Rachmat & Cahyanti, “Algoritma Tranformasi Ruang Warna,” Vis. Bassic6, Vis. Basic.NET dan java, pp. 1–94, 2010.

H. Sanusi, S. H. S., and D. T. Susetianingtias, “Pembuatan Aplikasi Klasifikasi Citra Daun Menggunakan Ruang Warna Rgb Dan Hsv,” J. Ilm. Inform. Komput., vol. 24, no. 3, pp. 180–190, 2019, doi: 10.35760/ik.2019.v24i3.2323.

S. Sakir et al., “Penerapan Metode Transformasi Ruang Warna HSI untuk Mendeteksi Tingkat Kematangan Buah Pisang Berdasarkan Fitur Warna Citra Kulit Pisang,” J. PASTI, vol. 14, no. 3, p. 243, 2021, doi: 10.22441/pasti.2020.v14i3.003.

H. Edha, S. H. Sitorus, U. Ristian, J. Rakayasa, and S. Komputer, “Penerapan Metode Transformasi Ruang Warna Hue Saturation Intensity ( Hsi ) Untuk Mendeteksi,” J. Komput. dan Apl., vol. 08, no. 1, pp. 1–10, 2020

D. A. S. Denny Hardiyanto, “EKSTRAKSI FITUR CITRA API BERBASIS EKSTRAKSI WARNA PADA RUANG WARNA HSV dan RGB,” J. Teknol. Inf. Dan Ilmu Komput., 2018.

M. F. Fibrianda and A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 9, pp. 3112–3123, 2018.

B. P. Pratiwi, A. S. Handayani, and S. Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix,” J. Inform. Upgris, vol. 6, no. 2, pp. 66–75, 2021, doi: 10.26877/jiu.v6i2.6552.

Published
2021-10-14
How to Cite
[1]
A. M. Syafi’i, M. F. Ahadi, M. I. Rasyid, F. D. Adhinata, and A. Junaidi, “Mendeteksi Kematangan Pada Buah Mangga Garifta Merah Dengan Transformasi Ruang Warna HSI”, JAIC, vol. 5, no. 2, pp. 117-121, Oct. 2021.