Automatic License Plate Detection System with YOLOv11 Algorithm

Authors

  • Nicholas Alfandhy Kurniawan Univeritas Dian Nuswantoro
  • Christy Atika Sari Universitas Dian Nuswantoro

DOI:

https://doi.org/10.30871/jaic.v9i6.11484

Keywords:

Character Recognition, License Plate Detection, Plate License, YOLOv11

Abstract

The increasing number of motor vehicles in Indonesia demands technological solutions to enhance efficiency and security, particularly in automatic license plate recognition systems. This study aims to develop an automatic license plate detection system using the YOLOv11 algorithm to detect license plates and their characters in real-time. The research methodology includes collecting datasets from Kaggle, RoboFlow, and manual acquisition, followed by annotation, data augmentation, model training, and interface development using Tkinter and OpenCV. The dataset comprises 4000 license plate images and 3000 characters images, divided for training, validation, and testing. Evaluation results demonstrate strong model performance, with precision of 0.891, recall of 0.911, mAP50 of 0.906, and mAP50-95 of 0.631 for license plate detection, and precision of 0.889, recall of 0.912, mAP50 of 0.907, and mAP50-95 of 0.629 for character detection. Real-time testing showed that 12 out of 12 license plates were successfully recognized, influenced by lighting conditions, distance, and plate orientation. This study produced an efficient system for parking security, with potential for further development.

Downloads

Download data is not yet available.

References

[1] E. Ektrada, L. Hakim, and S. P. Kristanto, “Sistem Tracking dan Counting Kendaraan Berbasis YOLO untuk Pemetaan Slot Parkir Kendaraan,” Softw. Dev. Digit. Bus. Intell. Comput. Eng., vol. 1, no. 02, pp. 55–60, Mar. 2023, doi: 10.57203/session.v1i02.2023.55-60.

[2] Y. Galahartlambang, T. Khotiah, Z. Fanani, and M. B. D. Rahmat, “Pengenalan Plat Nomor Kendaraan Real-Time pada Kondisi Gelap dan Hujan Menggunakan Deep Learning,” J. Inform. Rekayasa Elektron., vol. 8, no. 1, pp. 188–194, 2025.

[3] A. Malfaresa, M. Masril, O. E. Putra, H. Awal, and B. Hendrik, “Inovasi Sistem Kontrol Akses Gerbang Kantor Pemerintahan Berbasis Teknologi Multisensor dan Deteksi Plat Nomor Kendaraan,” J. QUANCOM QUANTUM Comput. J., vol. 2, no. 2, pp. 1–8, Dec. 2024, doi: 10.62375/jqc.v2i2.433.

[4] A. Meirza and N. R. Puteri, “Implementasi Metode YOLOV5 dan Tesseract OCR untuk Deteksi Plat Nomor Kendaraan,” J. Ilmu Komput. Dan Desain Komun. Vis., vol. 9, no. 1, pp. 424–435, 2024.

[5] O. Alfiano and S. Rahayu, “Implementasi Algoritma Deep Learning YOLO (You Only Look Once) untuk Deteksi Kualitas Kentang Segar dan Busuk Secara Real Time,” J. Res. Publ. Innov., vol. 2, no. 3, pp. 2470–2478, 2024.

[6] F. Agustina and M. Sukron, “Deteksi Kematangan Buah Pepaya Menggunakan Algoritma YOLO Berbasis Android,” J. INFOKAM, vol. XVIII, no. 2, pp. 71–78, 2022.

[7] N. J. Hayati, D. Singasatia, and M. R. Muttaqin, “Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan,” KOMPUTA J. Ilm. Komput. Dan Inform., vol. 12, no. 2, pp. 91–99, 2023.

[8] S. Nova, N. Khotimah, and M. Y. A. Wahyuningrum, “Pemanfaatan Chatbot Menggunakan Natural Language Processing untuk Pembelajaran Dasar-Dasar GUI Tkinter pada Bahasa Pemrograman Python,” J. Ilm. Tek., vol. 3, no. 1, pp. 58–65, 2024.

[9] Anthony, Herman, and A. Yulianto, “Pengembangan Sistem Pengenalan Plat Nomor Indonesia Menggunakan YOLOv8 dan EasyOCR,” J. Ilm. KOMPUTASI, vol. 23, no. 4, pp. 571–578, 2024.

[10] I. Virgiawan, F. Maulana, M. A. Putra, D. D. Kurnia, and E. Sinduningrum, “Deteksi dan Tracking Objek Secara Real-Time Berbasis Computer Vision Menggunakan Metode YOLO V3,” J. Ris. Penelit. Univers., vol. 05, no. 2, pp. 42–52, 2024.

[11] M. R. Rais, F. Utaminingrum, and H. Fitriyah, “Sistem Pengenalan Plat Nomor Kendaraan untuk Akses Perumahan menggunakan YOLOv5 dan Pytesseract berbasis Jetson Nano,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 7, no. 2, pp. 681–685, 2023.

[12] P. Hidayatullah, N. Syakrani, M. R. Sholahuddin, T. Gelar, and R. Tubagus, “YOLOv8 to YOLO11: A Comprehensive Architecture In-depth Comparative Review A PREPRINT.” 2025.

[13] L. He, Y. Zhou, L. Liu, W. Cao, and J. Ma, “Research on object detection and recognition in remote sensing images based on YOLOv11,” Sci. Rep., vol. 15, no. 1, p. 14032, Apr. 2025, doi: 10.1038/s41598-025-96314-x.

[14] R. G. Wijanarko, A. I. Pradana, and D. Hartanti, “Implementasi Deteksi Drone Menggunakan YOLO (You Only Look Once),” J. FASILKOM, vol. 14, no. 2, pp. 437–442, 2024.

[15] M. IKBAL and R. A. Saputra, “Pengenalan Rambu Lalu Lintas Menggunakan Metode YOLOv8,” JIKA J. Inform., vol. 8, no. 2, pp. 204–212, Apr. 2024, doi: 10.31000/jika.v8i2.10609.

[16] A. A. Rasjid, B. Rahmat, and A. N. Sihananto, “Implementasi YOLOv8 Pada Robot Deteksi Objek,” J. Technol. Syst. Inf., vol. 1, no. 3, pp. 1–9, Jul. 2024, doi: 10.47134/jtsi.v1i3.2969.

[17] M. R. Joyonegoro and E. Setyati, “Deteksi dan Pengenalan Dua Variasi Plat Nomor Kendaraan Bermotor di Indonesia dengan Variasi Waktu dan Pencahayaan Memanfaatkan YOLO V8 dan CNN,” KONVERGENSI, vol. 20, no. 1, pp. 11–17, 2024.

[18] M. H. Rais, A. Musnansyah, and H. Fakhrurroja, “Penerapan Algoritma YOLO V8 untuk Pengenalan Pengendara Sepeda Motor Tanpa Helm dalam Sistem Pemantauan Pelanggaran Lalu Lintas,” E-Proceeding Eng., vol. 12, no. 1, pp. 1531–1538, 2025.

[19] R. Hesananda, I. A. Noviani, and M. Zulfariansyah, “Implementasi YOLOv5 untuk Deteksi Objek Mesin EDC: Evaluasi dan Analisis,” BIOS J. Teknol. Inf. Dan Rekayasa Komput., vol. 5, no. 2, pp. 104–110, Aug. 2024, doi: 10.37148/bios.v5i2.127.

[20] B. D. Prasetya, E. P. Amalia, P. D. Juliana, and R. K. Niswatin, “Implementasi Object Detection Berbasis Web untuk Klasifikasi Jenis Sampah Menggunakan YOLOv8,” in Prosiding Seminar Nasional Teknologi dan Sains, 2025, pp. 60–65.

[21] W. P. N. Putra, A. I. Pradana, and Nurchim, “Implementasi Sistem Penghitungan Volume Kendaraan Menggunakan YoloV8,” J. FASILKOM, vol. 14, no. 2, pp. 443–450, 2024.

[22] M. Zakiyamani, T. I. Cahyani, D. Riana, and S. Hardianti, “Deteksi dan Pengenalan Plat Karakter Nomor Kendaraan Menggunakan OpenCV dan Deep Learning Berbasis Python,” J. Inf. Technol. Comput. Sci. INTECOMS, vol. 5, no. 1, pp. 56–64, 2022.

[23] H. Moussaoui and others, “Enhancing automated vehicle identification by integrating YOLO v8 and OCR techniques for high-precision license plate detection and recognition,” Sci. Rep., vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-65272-1.

[24] M. A. Chung, Y. J. Lin, and C. W. Lin, “YOLO-SLD: An Attention Mechanism-Improved YOLO for License Plate Detection,” IEEE Access, vol. 12, pp. 89035–89045, 2024, doi: 10.1109/ACCESS.2024.3419587.

[25] R. Al-batat, A. Angelopoulou, S. Premkumar, J. Hemanth, and E. Kapetanios, “An End-to-End Automated License Plate Recognition System Using YOLO Based Vehicle and License Plate Detection with Vehicle Classification,” Sensors, vol. 22, no. 23, Dec. 2022, doi: 10.3390/s22239477.

Downloads

Published

2025-12-05

How to Cite

[1]
N. A. Kurniawan and C. A. Sari, “Automatic License Plate Detection System with YOLOv11 Algorithm”, JAIC, vol. 9, no. 6, pp. 3097–3109, Dec. 2025.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.