User Requirement Recommendation Model for Waste Reporting Platforms Based on UX Topics and Sentiment Analysis

Authors

  • Irmma Dwijayanti Universitas Jenderal Achmad Yani Yogyakarta
  • Alfirna Rizqi Lahitani Universitas Jenderal Achmad Yani Yogyakarta
  • Muhammad Habibi Universitas Jenderal Achmad Yani Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i6.11371

Keywords:

LDA, Rule-Based Recommendation, SVM, UX Honeycomb, Waste Management

Abstract

Waste management remains a critical issue in Indonesia, as emphasized in the RPJMN 2025–2029. Ineffective collection and processing services, coupled with limited public participation, continue to hinder progress. Meanwhile, social media has emerged as a primary channel for citizens to express complaints and reports on waste, yet the unstructured nature of comments poses challenges for integration into official reporting systems. This study proposes a user requirements recommendation model based on social media data by integrating sentiment analysis, topic modeling, and rule-based recommendation. Data were collected from YouTube and TikTok comments. Sentiment classification was performed using Support Vector Machine (SVM), while Latent Dirichlet Allocation (LDA) was employed for topic modeling, with results mapped onto the UX Honeycomb dimensions. Recommendation rules were then formulated by combining sentiment polarity with UX dimensions. The SVM model achieved an average accuracy of 87.5% with balanced precision, recall, and F1-score. LDA produced 15 coherent topics, which were distributed across seven UX dimensions. The integration revealed that the main user requirements include transparency in report follow-up through real-time notifications and clear status updates. Additional recommendations involve simplifying the reporting process, providing auto-fill features, improving visual design, and establishing a user appreciation system. The findings demonstrate the potential of leveraging social media comments to systematically capture user requirements, offering practical insights for developers to design waste reporting platforms that are effective, user-friendly, and responsive to community expectations.

Downloads

Download data is not yet available.

References

[1] Jaringan Dokumentasi dan Informasi Hukum Kementerian Sekretaris Negara, Peraturan Presiden (Perpres) tentang Rencana Pembangunan Jangka Menengah Nasional Tahun 2025 - 2029. Indonesia: Jaringan Dokumentasi dan Informasi Hukum Kementerian Sekretaris Negara, 2025. [Online]. Available: https://jdih.setneg.go.id/

[2] B. R. Alfathi, “Banjir Dominasi Bencana Alam Indonesia 2024,” https://data.goodstats.id/. Accessed: Apr. 02, 2025. [Online]. Available: https://data.goodstats.id/statistic/banjir-dominasi-bencana-alam-indonesia-2024-DH6lL

[3] Y. Zahrah, J. Yu, and X. Liu, “How Indonesia’s Cities Are Grappling with Plastic Waste: An Integrated Approach towards Sustainable Plastic Waste Management,” Sustain. , vol. 16, no. 10, p. 3921, May 2024, doi: 10.3390/SU16103921/S1.

[4] J. S. Maheswari, E. S. Hikmah, and M. B. Rizaldhi, “Penggunaan Media Instagram dalam Kampanye Pengurangan Sampah Plastik: Studi Pustaka Artikel Ilmiah Periode 2019-2022,” in Prosiding Seminas Nasional Universitas Negeri Surabaya, Surabaya: Universitas Negeri Surabaya, 2023, pp. 702–711.

[5] E. S. Aulia, N. A. Putri, A. T. Lumintang, N. Nabiilah, B. S. Inessafitri, and D. E. Rahmawati, “Sentiment Analysis: Proses Komunikasi Pemerintahan Pada Gerakan Zero Sampah Anorganik Di Kota Yogyakarta Menuju Kota Berkelanjutan,” JIIP J. Ilm. Ilmu Pemerintah., vol. 9, no. 2, pp. 169–180, Oct. 2024, doi: 10.14710/JIIP.V9I2.24032.

[6] H. Yuliansyah, S. A. Mulasari, S. Sulistyawati, F. A. Ghozali, and B. Sudarsono, “Sentiment Analysis of the Waste Problem based on YouTube comments using VADER and Deep Translator,” J. MEDIA Inform. BUDIDARMA, vol. 8, no. 1, p. 663, Feb. 2024, doi: 10.30865/MIB.V8I1.6918.

[7] R. A. Nugroho, S. H. Wijono, K. Pinaryanto, R. Gunawan, and F. X. Sinungharjo, “Sentiment Analysis on Tweets about Waste Problem in Yogyakarta using SVM,” Int. J. Appl. Sci. Smart Technol., vol. 6, no. 1, pp. 183–196, Jun. 2024, doi: 10.24071/IJASST.V6I1.7415.

[8] “ISO 9241-210:2019 - Ergonomics of human-system interaction — Part 210: Human-centred design for interactive systems.” Accessed: Sep. 18, 2025. [Online]. Available: https://www.iso.org/standard/77520.html

[9] Interaction Design Foundation-IxDF, “User Experience Design,” Interaction Design Foundation. Accessed: Sep. 19, 2025. [Online]. Available: https://www.interaction-design.org/literature/topics/ux-design

[10] N. N. Hidayati and A. Parlina, “Performance Comparison of Topic Modeling Algorithms on Indonesian Short Texts,” ACM Int. Conf. Proceeding Ser., pp. 117–120, Nov. 2022, doi: 10.1145/3575882.3575905.

[11] S. Mifrah and E. H. Benlahmar, “Topic Modeling Coherence: A Comparative Study beetween LDA and NMF Models using COVID’19 Corpus,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 4, pp. 5756–5761, 2022, Accessed: Sep. 19, 2025. [Online]. Available: https://www.warse.org/IJATCSE/static/pdf/file/ijatcse231942020.pdf?

[12] A. Rkia, A. Fatima-Azzahrae, A. Mehdi, and L. Lily, “NLP and Topic Modeling with LDA, LSA, and NMF for Monitoring Psychosocial Well-being in Monthly Surveys,” Procedia Comput. Sci., vol. 251, pp. 398–405, Jan. 2024, doi: 10.1016/J.PROCS.2024.11.126.

[13] E. Chagnon, R. Pandolfi, J. Donatelli, and D. Ushizima, “Benchmarking topic models on scientific articles using BERTeley,” Nat. Lang. Process. J., vol. 6, p. 100044, Mar. 2024, doi: 10.1016/J.NLP.2023.100044.

[14] K. Kusumaningtyas, A. R. Lahitani, I. Dwijayanti, M. Habibi, and A. Yani Yogyakarta, “Mapping User Dissatisfaction in Mobile Banking Applications Using Ensemble Clustering LDA and LSA,” IJNMT (International J. New Media Technol., vol. 12, no. 1, pp. 32–38, Jun. 2025, doi: 10.31937/IJNMT.V12I1.3804.

[15] D. Y. Saraswati, M. R. Handayani, K. Umam, and M. I. Mustofa, “Sentiment Classification of MyPertamina Reviews Using Naïve Bayes and Logistic Regression,” J. Appl. Informatics Comput., vol. 9, no. 4, pp. 1319–1325, Aug. 2025, doi: 10.30871/JAIC.V9I4.9723.

[16] S. Prayudani, D. R. B. Situmorang, R. Hidayah, and H. S. Ginting, “Sentiment Analysis of Social Media X in the 2024 Indonesian Presidential Election Using the Naive Bayes Algorithm: Candidates’ Backgrounds and Political Promises,” J. Appl. Informatics Comput., vol. 8, no. 2, pp. 291–295, Oct. 2024, doi: 10.30871/JAIC.V8I2.7580.

[17] J. O. Leandro and M. I. Fianty, “Evaluation of Sentiment Analysis Methods for Social Media Applications: A Comparison of Support Vector Machines and Naïve Bayes,” JOIV Int. J. Informatics Vis., vol. 9, no. 2, pp. 796–807, Mar. 2025, doi: 10.62527/JOIV.9.2.2905.

[18] Natasha and R. R. Suryono, “Sentiment Analysis of the Influence of the Korean Wave in Indonesia using the Naive Bayes Method and Support Vector Machine,” INOVTEK Polbeng - Seri Inform., vol. 10, no. 1, pp. 308–319, Mar. 2025, doi: 10.35314/85X4WD90.

[19] M. Elahi, D. Khosh Kholgh, M. S. Kiarostami, M. Oussalah, and S. Saghari, “Hybrid recommendation by incorporating the sentiment of product reviews,” Inf. Sci. (Ny)., vol. 625, pp. 738–756, May 2023, doi: 10.1016/J.INS.2023.01.051.

[20] Y. P. Mulyani et al., “Analyzing public discourse on photovoltaic (PV) adoption in Indonesia: A topic-based sentiment analysis of news articles and social media,” J. Clean. Prod., vol. 434, p. 140233, Jan. 2024, doi: 10.1016/J.JCLEPRO.2023.140233.

[21] F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, vol. 2018-January, pp. 391–394, Jul. 2017, doi: 10.1109/IALP.2017.8300625.

[22] K. Kusumaningtyas, M. Habibi, I. Dwijayanti, and R. Sumiyarini, “Tweet Analysis of Mental Illness Using K-Means Clustering and Support Vector Machine,” Telematika, vol. 20, no. 3, p. 295, 2023, doi: 10.31315/telematika.v20i3.9820.

[23] W. Widayani and H. Harliana, “Analisis Support Vector Machine Untuk Pemberian Rekomendasi Penundaan Biaya Kuliah Mahasiswa,” J. Sains dan Inform., vol. 7, no. 1, pp. 20–27, Jun. 2021, doi: 10.34128/JSI.V7I1.268.

[24] D. M. Blei, A. Y. Ng, and J. B. Edu, “Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003, doi: 10.5555/944919.944937.

[25] P. Morville, “User Experience Design,” Semantic Studios. Accessed: Sep. 19, 2025. [Online]. Available: http://semanticstudios.com/user_experience_design/

[26] S. P. Handasari, R. Wulandari, and Haikal, “Evaluation of the Usability and User Experience of the Jaminan Kesehatan Nasional Mobile Application in Indonesia,” Healthc. Inform. Res., vol. 30, no. 4, p. 324, Oct. 2024, doi: 10.4258/HIR.2024.30.4.324.

[27] R. Bastardo, J. Pavão, and N. P. Rocha, “Methodological Quality of User-Centered Usability Evaluation of Digital Applications to Promote Citizens’ Engagement and Participation in Public Governance: A Systematic Literature Review,” Digit. 2024, Vol. 4, Pages 740-761, vol. 4, no. 3, pp. 740–761, Sep. 2024, doi: 10.3390/DIGITAL4030038.

[28] W. W. Sejati, E. Sibagariang, and H. Setiawan, “Evaluation And Design Of User Experience In Cove Application Using Ux Honeycomb,” Comput. Based Inf. Syst. J., vol. 12, no. 2, pp. 29–39, Sep. 2024, doi: 10.33884/CBIS.V12I2.9200.

[29] Y. Prasetya and R. Rahmi, “Pilot Study on User Experience Analysis of Universitas Indonesia Library Website,” Tik Ilmeu J. Ilmu Perpust. dan Inf., vol. 7, no. 1, p. 105, Jun. 2023, doi: 10.29240/TIK.V7I1.6453.

[30] D. Roy and M. Dutta, “A systematic review and research perspective on recommender systems,” J. Big Data, vol. 9, no. 1, pp. 1–36, Dec. 2022, doi: 10.1186/S40537-022-00592-5/TABLES/9.

[31] A. M. Deshmukh and R. Chalmeta, “User Experience and Usability of Voice User Interfaces: A Systematic Literature Review,” Inf. 2024, Vol. 15, Page 579, vol. 15, no. 9, p. 579, Sep. 2024, doi: 10.3390/INFO15090579.

[32] U. Oh, H. Joh, and Y. Lee, “Image Accessibility for Screen Reader Users: A Systematic Review and a Road Map,” Electron. 2021, Vol. 10, Page 953, vol. 10, no. 8, p. 953, Apr. 2021, doi: 10.3390/ELECTRONICS10080953.

[33] A. Oldeweme, J. Märtins, D. Westmattelmann, and G. Schewe, “The role of transparency, trust, and social influence on uncertainty reduction in times of pandemics: Empirical study on the adoption of COVID-19 tracing apps,” J. Med. Internet Res., vol. 23, no. 2, p. e25893, Feb. 2021, doi: 10.2196/25893.

[34] F. Tang and B. M. Østvold, “Transparency in App Analytics: Analyzing the Collection of User Interaction Data,” 2023 20th Annu. Int. Conf. Privacy, Secur. Trust. PST 2023, Jun. 2023, doi: 10.1109/PST58708.2023.10320181.

[35] A. Aldrees and D. Gračanin, “UX in E-government Services for Citizens: A Systematic Literature Review,” J. User Exp., vol. 18, no. 3, pp. 133–169, May 2023, Accessed: Sep. 27, 2025. [Online]. Available: https://uxpajournal.org/ux-in-e-government-services-for-citizens-a-systematic-literature-review/?

[36] J. Hochstetter, F. Vásquez, M. Diéguez, A. Bustamante, and J. Arango-López, “Transparency and E-Government in Electronic Public Procurement as Sustainable Development,” Sustain. 2023, Vol. 15, Page 4672, vol. 15, no. 5, p. 4672, Mar. 2023, doi: 10.3390/SU15054672.

[37] B. Lu and J. Wang, “How can residents be motivated to participate in waste recycling? An analysis based on two survey experiments in China,” Waste Manag., vol. 143, pp. 206–214, Apr. 2022, doi: 10.1016/J.WASMAN.2022.02.034.

Downloads

Published

2025-12-08

How to Cite

[1]
I. Dwijayanti, A. R. Lahitani, and M. Habibi, “User Requirement Recommendation Model for Waste Reporting Platforms Based on UX Topics and Sentiment Analysis”, JAIC, vol. 9, no. 6, pp. 3509–3517, Dec. 2025.

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.