Comparison of Online Gambling Promotion Detection Performance Using DistilBERT and DeBERTa Models

Authors

  • Halim Meliana Pratama Udayana University
  • IGN Lanang Wijayakusuma Udayana University
  • Ratna Sari Widiastuti Udayana University

DOI:

https://doi.org/10.30871/jaic.v9i6.11293

Keywords:

DistilBERT, DeBERTa, Online Gambling, Transformer, Text Classification

Abstract

Online gambling promotions on social media have become a serious concern in Indonesia, where perpetrators use ambiguous and disguised language to evade detection. This study compares two transformer-based models, DistilBERT and DeBERTa, in detecting such content within Indonesian YouTube comments. Using a balanced dataset of 6,350 comments, both models were fine-tuned with optimized hyperparameters (learning rate 1e-5, batch size 32, 5 epochs) and evaluated through five-fold cross-validation. Results show that DeBERTa achieves superior performance with 99.84% accuracy and perfect recall, while DistilBERT achieves 99.29% accuracy. Error and linguistic analyses indicate that DeBERTa’s disentangled attention and Byte-Pair Encoding provide better understanding of non-standard and ambiguous language. Despite requiring higher computational cost, DeBERTa is ideal for high-accuracy applications, whereas DistilBERT remains suitable for real-time and resource-limited environments.

Downloads

Download data is not yet available.

References

[1] RRI Data (2024), Data Statistika Penggunaan Media Sosial Masyarakat Indonesia. https://www.rri.co.id/iptek/721570/ini-data-statistik-penggunaan-media-sosial-masyarakat-indonesia-tahun-2024.

[2] R. Bayu Perdana, I. Budi, A. Budi Santoso, A. Ramadiah, and P. Kresna Putra, “Detecting Online Gambling Promotions on Indonesian Twitter Using Text Mining Algorithm,” 2024. [Online]. Available: www.ijacsa.thesai.org

[3] A. Maulana and A. Yuliana, “Analisis Sentimen Opini Publik Terkait Judi Online Pada Pengguna Aplikasi X Menggunakan Algoritma Naïve Bayes Dan Support Vector Mechine,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3S1, Oct. 2024, doi: 10.23960/jitet.v12i3S1.5187.

[4] E. Smith, N. Reiter, and J. Peters, “Automatic detection of problem-gambling signs from online texts using large language models,” Nov. 2023, [Online]. Available: http://arxiv.org/abs/2312.00804

[5] F. Fajri et al., “Membandingkan Nilai Akurasi BERT dan DistilBERT pada Dataset Twitter,” vol. 8, no. 2, pp. 71–80, 2022.

[6] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter,” Oct. 2019, [Online]. Available: http://arxiv.org/abs/1910.01108

[7] J. Carreras Timoneda and S. Vallejo Vera, “BERT, RoBERTa or DeBERTa? Comparing Performance Across Transformer Models in Political Science Text,” J Polit, Jan. 2024, doi: 10.1086/730737.

[8] S. Ruder, M. Peters, S. Swayamdipta, and T. Wolf, “Ruder, S. (2019). Transfer Learning in Natural Language Processing. arXiv preprint arXiv:1901.11504.”

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA: MIT Press, 2016.

[10] A. Chopra, A. Prashar, and C. Sain, “Natural Language Processing,” International Journal Of Technology Enhancements And Emerging Engineering Research, vol. 1, no. 4, 2013, [Online]. Available: http://en.wikipedia.org/wiki/

[11] C. Jocelynne, L. Tobing, I. Lanang Wijayakusuma, L. Putu, and I. Harini, “Detection of Political Hoax News Using Fine-Tuning IndoBERT,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[12] Vasmani, A., Shazeer, N., Parman, N., Uszkoreit, J., Jones, L., Gomez, A., & Kaiser, L. (2017) Attention is all you need. URL https://proceedings.neurips.cc/paper_files/paper/ 2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.”

[13] P. He, X. Liu, J. Gao, and W. Chen, “DeBERTa: Decoding-enhanced BERT with Disentangled Attention,” Jun. 2020, doi: https://doi.org/10.48550/arXiv.2006.03654.

[14] M. B. Nugroho, A. Khanif Zyen, and A. Widiastuti, “Multiclass Sentiment Analysis of Electric Vehicle Incentive Policies Using IndoBERT and DeBERTa Algorithms,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[15] S. Mahendru and T. Pandit, “SecureNet: A Comparative Study of DeBERTa and Large Language Models for Phishing Detection,” Jun. 2024, doi: 10.1109/BDAI62182.2024.10692765.

Downloads

Published

2025-12-10

How to Cite

[1]
H. M. Pratama, I. L. Wijayakusuma, and R. S. Widiastuti, “Comparison of Online Gambling Promotion Detection Performance Using DistilBERT and DeBERTa Models”, JAIC, vol. 9, no. 6, pp. 3716–3725, Dec. 2025.

Most read articles by the same author(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.