Comparison of FEM-LSDV Panel Regression with Classical Panel Regression Models in Analyzing Economic Growth in Indonesia

Authors

  • Harismahyanti A Andi Universitas Tadulako
  • Najiha Alimatun Universitas Tadulako
  • Andi Isna Yunita Universitas Hasanuddin
  • Ratmila Ratmila Universitas Negeri Manado
  • Nur'eni Nur'eni Universitas Tadulako

DOI:

https://doi.org/10.30871/jaic.v9i5.10318

Keywords:

Economic Growth, FEM-LSDV, Panel Regression Models, Indonesia

Abstract

This study evaluates the performance of multiple panel regression approaches in modeling the determinants of regional economic growth in Indonesia. It specifically compares three classical panel models: the Common Effect Model (CEM), the Random Effect Model (REM), and the Fixed Effect Model (FEM), alongside the Fixed Effect Model with the Least Squares Dummy Variable (FEM LSDV) approach. The analysis is based on panel data covering 34 provinces from 2019 to 2023, using key macroeconomic indicators such as inflation, investment, exports, money supply, open unemployment rate, and participation in the national health insurance program (JKN). The models are assessed using formal statistical tests, including the Chow and Hausman tests, and evaluated through performance metrics such as RMSE, AIC, and R-squared. The results show that the FEM LSDV model offers the best performance, with an R-squared value of 0.7039, RMSE of 0.5442, and an AIC of 365.55. Notably, the model identifies North Maluku Province as contributing positively and significantly to economic growth, while the year 2020 shows a significant negative impact, likely due to the economic disruptions caused by the COVID-19 pandemic. These findings demonstrate the effectiveness of the FEM LSDV approach in capturing both spatial and temporal heterogeneity in regional economic analysis and support its application in policy-oriented research.

Downloads

Download data is not yet available.

References

[1] G. Zakhidov, “Economic Indicators: Tools for Analyzing Market Trends and Predicting Future Performance,” Int. Multidiscip. J. Univ. Sci. Prospectives, pp. 23–29, 2024.

[2] V. Plevris, G. Solorzano, N. Bakas, and M. E. Seghier, “Investigation of performance metrics in regression analysis and machine learning-based prediction models,” Proc. 8th Eur. Congr. Comput. Methods Appl. Sci. Eng., 2022.

[3] B. H. Beyaztas and S. Bandyopadhyay, “Robust Estimation for Linear Panel Data Models,” arXiv preprint, arXiv:2001.00000, 2020.

[4] M. Joseph, S. Moonsammy, H. Davis, D. Warner, and T. D. A. Adams, “Modelling climate variabilities and global rice production: A panel regression and time series analysis,” Heliyon, 2023.

[5] E. W. Nugrahadi, I. Maipita, Fitrawaty, and N. Hidayat, “Impact of Labor and Health on Economic Growth in Indonesia During the COVID-19 Pandemic: A Panel Data Regression Analysis,” Int. J. Sustain. Dev. Plan., pp. 1232–1245, 2023.

[6] D. Permatasari and S. D. Anggadini, “Analisis Model Panel Data pada Pertumbuhan Ekonomi Provinsi di Indonesia,” J. Apl. Stat. dan Komput. Stat., pp. 101–110, 2020.

[7] Fitrawaty and I. Maipita, “The Effect of Government Spending and Health on Economic Growth: Panel Data Analysis in Indonesia,” J. Ekon. Pembang. Indones., pp. 45–56, 2022.

[8] I. Budiarty and N. H. Sitorus, “Determinants of Indonesia’s Economic Growth 2010–2022: Indonesia Panel Data Analysis Using ARDL,” Nawala Journal, 2023.

[9] G. M. Tinungki, Siswanto, and A. Najiha, “The Gumbel Copula Method for Estimating Value at Risk: Evidence from Telecommunication Stocks in Indonesia during the COVID-19 Pandemic,” J. Risk Financial Manag., p. 424, 2023.

[10] W. Zhang, S. Zhao, X. Wan, and Y. Yao, “Study on the effect of digital economy on high-quality economic development in China,” PLoS ONE, vol. 16, no. 9, 2021.

[11] S. H. Saragih, M. Saputra, and P. Lumbanraja, “The Role of Investment and Labor Absorption on Indonesia’s Economic Recovery,” J. Asian Finance Econ. Bus., pp. 139–147, 2022.

[12] R. M. O’Brien, “A caution regarding rules of thumb for variance inflation factors,” Qual. Quant., vol. 41, no. 5, pp. 673–690, Oct. 2007.

[13] R. J. Djami, S. F. A. Djamalullail & R. Salhuteru, “Pemodelan Faktor-Faktor Yang Mempengaruhi Laju Pertumbuhan Ekonomi Di Provinsi Maluku Menggunakan Regresi Data Panel,” Jurnal Riset dan Aplikasi Matematika (JRAM) , vol. 8, no. 2, pp. 178-188, 2024.

[14] A. M. Nurdin, M. I. Arfan, Siswanto & A. Kalondeng, “Pemodelan Data Panel dengan Pendekatan Least Square Dummy Variable terhadap Faktor-Faktor yang Memengaruhi Kasus Kriminalitas di Sulawesi Selatan,” ESTIMASI: Journal of Statistics and Its Application, vol. 5, no. 1, pp. 126-140, 2024.

[15] A. Dewantoro and T. B. Sasongko, “Comparison of LSTM Model Performance with Classical Regression in Predicting Gaming Laptop Prices in Indonesia,” Journal of Applied Informatics and Computing (JAIC), vol. 8, no. 1, pp. 203-212, 2024.

[16] D. J. Louhenapessy and V. Rijoly, “Analisis Faktor-Faktor yang Mempengaruhi Pertumbuhan Ekonomi Sebelum dan Sesudah Pandemi Covid-19,” J. Cita Ekon., vol. 16, no. 1, pp. 18–27, May 2022.

[17] L. Saryani, Abdelina, and A. S. Pulungan, “Impact Of The Covid-19 Pandemic On The Indonesian Economy,” Int. J. Educ. Res. Soc. Sci. , vol. 2, no. 5, pp. 996–1007, Nov. 2021.

[18] A. Ghasemi and S. Zahediasl, “Normality Tests for Statistical Analysis: A Guide for Non-Statisticians,” Int. J. Endocrinol. Metab., vol. 10, no. 2, p. 486, 2012, doi: 10.5812/IJEM.3505.

Downloads

Published

2025-10-08

How to Cite

[1]
H. A. Andi, N. Alimatun, A. I. Yunita, R. Ratmila, and N. Nur'eni, “Comparison of FEM-LSDV Panel Regression with Classical Panel Regression Models in Analyzing Economic Growth in Indonesia”, JAIC, vol. 9, no. 5, pp. 2450–2460, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.