ESTIMASI STATE OF CHARGE BATERAI LITHIUM POLYMER MENGGUNAKAN BACK PROPAGATION NEURAL NETWORK

Penulis

  • Mohammad Imron Dwi Prasetyo Politeknik Elektronika Negeri Surabaya
  • Hasnira Hasnira Politeknik Negeri Batam
  • Novie Ayub Windarko Politeknik Elektronika Negeri Surabaya
  • Anang Tjahjono Politeknik Elektronika Negeri Surabaya

DOI:

https://doi.org/10.30871/ji.v12i2.2163

Kata Kunci:

Back Propagation Neural Network, State Of Charge (SOC), Open Circuit Voltage (OCV)

Abstrak

Baterai merupakan salah satu komponen yang penting dalam konteks implementasi renewable energy. Jenis Baterai yang memiliki kepadatan dalam penyimpanan energy adalah lithium polymer. Parameter dalam baterai yang harus diperhatikan adalah estimasi State Of Charge (SOC). Pada umumnya estimasi SOC baterai menggunakan metode coloumb counting karena tingkat kesulitanya rendah. Namun terdapat kelemahan dari sisi ketergantungan terhadap utilitas sensor arus yang digunakan sebagai akumulasi dari integral arus yang masuk maupun arus yang keluar terhadap waktu. Dalam penelitian ini menyajikan Back Propagation Neural Network (BPNN) sebagai algoritma untuk estimasi SOC berdasarkan kurva karakteristik OCV "“ SOC. Kurva karakteristik OCV "“ SOC baterai didapatkan dari pengujian pulsa baterai. Tegangan, arus, dan waktu discharging baterai digunakan sebagai input layer BPNN pertama untuk estimasi Open Circuit Voltage (OCV). OCV akan dilearning sebagai input layer BPNN kedua untuk estimasi SOC baterai. Hasil dari simulasi estimasi SOC didapatkan galat rata-rata sebesar 0.479% terhadap SOC riil berdasarkan kurva karakteristik OCV "“ SOC.

Unduhan

Data unduhan belum tersedia.

Referensi

A. H. Budiman, P. Teknologi, K. Dan, K. Energi, B. Pengkajian, and D. A. N. Penerapan, "Pengembangan Energy Storage," Kaji. Roadmap Pengemb. Energy Storage untuk Smart Grid Syst., p. 46, 2013.

G. J. May, A. Davidson, and B. Monahov, "Lead batteries for utility energy storage: A review," J. Energy Storage, vol. 15, pp. 145"“157, 2018.

L. Long, S. Wang, M. Xiao, and Y. Meng, "Polymer electrolytes for lithium polymer batteries," J. Mater. Chem. A, vol. 4, no. 26, pp. 10038"“10039, 2016.

C. Huai, P. Liu, and X. Jia, "Measurement and analysis for lithium battery of high-rate discharge performance," Procedia Eng., vol. 15, pp. 2619"“2623, 2011.

J. Kim, S. Lee, and B. H. Cho, "Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction," IEEE Trans. Power Electron., vol. 27, no. 1, pp. 436"“451, 2012.

J. Klee Barillas, J. Li, C. Günther, and M. A. Danzer, "A comparative study and validation of state estimation algorithms for Li-ion batteries in battery management systems," Appl. Energy, vol. 155, pp. 455"“462, 2015.

Y. Su, "Switching-based state-of-charge estimation of lithium-ion batteries Switching-Based State-of-Charge Estimation of Lithium-Ion Batteries," 2011.

L. W. Kang, X. Zhao, and J. Ma, "A new neural network model for the state-of-charge estimation in the battery degradation process," Appl. Energy, vol. 121, pp. 20"“27, 2014.

F. Yang, Y. Xing, D. Wang, and K. L. Tsui, "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Appl. Energy, vol. 164, pp. 387"“399, 2016.

S. Jeon, J. J. Yun, and S. Bae, "Comparative study on the battery state-of-charge estimation method," Indian J. Sci. Technol., vol. 8, no. 26, pp. 1"“6, 2015.

B. Scrosati and J. Garche, "Lithium batteries: Status, prospects and future," J. Power Sources, vol. 195, no. 9, pp. 2419"“2430, 2010.

R. Ahmed, "Modeling and State of Charge Estimation of Electric Vehicle," Dr. Diss., 2014.

J. Xie, J. Ma, and K. Bai, "Enhanced coulomb counting method for state-of-charge estimation of lithium-ion batteries based on peukert's law and coulombic efficiency," J. Power Electron., vol. 18, no. 3, pp. 910"“922, 2018.

W.-Y. Chang, "The State of Charge Estimating Methods for Battery: A Review," ISRN Appl. Math., vol. 2013, no. 1, pp. 1"“7, 2013.

C. Dong and G. Wang, "Estimation of power battery SOC based on improved BP neural network," 2014 IEEE Int. Conf. Mechatronics Autom. IEEE ICMA 2014, pp. 2022"“2027, 2014.

L. Xiao, X. Chen, and X. Zhang, "A joint optimization of momentum item and levenberg-marquardt algorithm to level Up the BPNN's generalization ability," Math. Probl. Eng., vol. 2014, no. November 2015, 2014.

L. Fausett, "Fundamentals Of Neural Network Architectures, Algorithms, and Applications," Inc.,New Jersey, vol. 116, no. 0, pp. 1"“476, 1994.

S. Tong, J. H. Lacap, and J. W. Park, "Battery state of charge estimation using a load-classifying neural network," J. Energy Storage, vol. 7, pp. 236"“243, 2016.

Diterbitkan

2020-10-31

Artikel paling banyak dibaca berdasarkan penulis yang sama