Perancangan dan Analisis Performa 3D Printer Cartesian

  • Yuris Setyoadi Program Studi Teknik Mesin, Universitas PGRI Semarang
  • Rifki Hermana Program Studi Teknik Mesin, Universitas PGRI Semarang
  • Rahman Hakim Program Studi Teknik Mesin, Politeknik Negeri Batam. http://orcid.org/0000-0002-1105-6902
  • Achmad Didi Riyadi Program Studi Teknik Mesin, Universitas PGRI Semarang
  • Hanifah Widiastuti Program Studi Teknik Mesin, Politeknik Negeri Batam
Keywords: Cartesian 3D Printer, Printing Accuracy, Prototype Manufacturing, 3D Printer Comparison, 3D Printing Technology

Abstract

3D printer technology offers the capability to print 3D objects with nearly perfect accuracy, making it a crucial tool in the industry for rapid prototyping. This study employs an experimental approach to design a Cartesian 3D Printer with a printing area of X-axis 150 mm, Y-axis 150 mm, and Z-axis 200 mm, and subsequently compares the printing accuracy with the Anycubic Mega Zero 3D printer, which has a printing area of X-axis 220 mm, Y-axis 220 mm, and Z-axis 250 mm. Both machines underwent testing by printing block specimens 10 times each. The printing results revealed several specimens that did not meet the specified tolerance limits. In the Cartesian 3D Printer, three dimensional measurements exceeded tolerance levels in specimens 7 and 8, specifically in length, width, and height dimensions. Meanwhile, in the Anycubic Mega Zero 3D Printer, five measurements exceeded tolerance limits in specimens 6, 8, and 9, with one width dimension and two length and height dimensions. From these findings, it can be concluded that the Cartesian 3D Printer demonstrates higher accuracy compared to the Anycubic Mega Zero 3D Printer.

Downloads

Download data is not yet available.

References

Hasnira, H., Toar, H., Hakim, R., Saputra, I., & Irawan, B. H. (2022). Konsep Pembelajajaran Pemindaian Model Tiga Dimensi: Konsep dan Aplikasinya. Journal of Applied Sciences, Electrical Engineering and Computer Technology, 3(01), 6-11.

Scherick, J., Touchette, C., Gulbin, M., Coady, P., Radhakrishnan, P., & Brown, D. C. (2021). Gapa: an Application To Assist Novice Users With 3D Printing. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 6. https://doi.org/10.1115/IMECE2021-71068

Amri, A.A.N. dan Sumbodo, W. (2018). Perancangan 3D Printer Tipe Core XY Berbasis Fused Deposition Modeling (FDM) Menggunakan Software Autodesk Inventor 2015. Jurnal Dinamika Vokasional Teknik Mesin. 3(2), 110-115.

Amrullah, M. A. M., (2018). Rancang Bangun Prototipe Printer 3 Dimensi (3D) Tipe Cartesian Berbasis Fused Deposition Modelling (FDM) (Doctoral dissertation, University of Technology Yogyakarta).

Andriyansyah, D., & Jamaldi, A. (2021). Perancangan Dan Pembuatan Mesin 3D Printer Tipe Cantilever. Abdi Masya, 1(2), 108-114.

Zhao, D., Li, T., Shen, B., Jiang, Y., Guo, W., & Gao, F. (2020). A multi-DOF rotary 3D printer: machine design, performance analysis and process planning of curved layer fused deposition modeling (CLFDM). Rapid Prototyping Journal, 26(6), 1079–1093. https://doi.org/10.1108/RPJ-06-2019-0160

Aryswan, A., Hakim, R., & Saputra, M. R. (2019). Analisa Kekasaran Permukaan Produk Mesin Cetak Tiga Dimensi Dengan Material Acrylonitrile Butadiene Styrene Terlapis Cat Emulsi. Jurnal Teknologi dan Riset Terapan (JATRA), 1(2), 72-75.

Irawan, B. H., Hakim, R., Widiastuti, H., Kamsyah, D., & Sahputra, B. (2019). Pengaruh Temperatur Nozzle dan Base Plate pada Mesin Leapfrog Creatr 3d Printer terhadap Density dan Surface Roughness Material ABS. Jurnal Teknologi dan Riset Terapan (JATRA), 1(1), 32-37.

Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D Printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

Kalsoom, U., Hasan, C. K., Tedone, L., Desire, C., Li, F., Breadmore, M. C., Nesterenko, P. N., & Paull, B. (2018). Low-Cost Passive Sampling Device with Integrated Porous Membrane Produced Using Multimaterial 3D Printing. Analytical Chemistry, 90(20), 12081–12089. https://doi.org/10.1021/acs.analchem.8b02893

Wicaksono, R. A., Kurniawan, E., Syafrianto, M. K., Suratman, R. F., & Sofyandi, M. R. (2021). Rancang Bangun dan Simulasi 3D Printer Model Cartesian Berbasis Fused Deposition Modelling. Jurnal Engine: Energi, Manufaktur, dan Material, 5(2), 53-64.

Camargo, J. C., Machado, Á. R., Almeida, E. C., & Silva, E. F. M. S. (2019). Mechanical properties of PLA-graphene filament for FDM 3D printing. The International Journal of Advanced Manufacturing Technology, 103(5), 2423–2443. https://doi.org/10.1007/s00170-019-03532-5

Li, B., Liu, J., Gu, H., Jiang, J., Zhang, J., & Yang, J. (2019). Structural Design of FDM 3D Printer for Low-melting Alloy. IOP Conference Series: Materials Science and Engineering, 592(1). https://doi.org/10.1088/1757-899X/592/1/012141

Mulyanto, F. D., Setyoadi, Y., & Hermana, R. (2022). The Performance Analysis of The 3D Printer Corexy FDM Type With Area X= 200 Y= 200 Z= 200 mm. Jurnal Teknik Mesin Mechanical Xplore, 3(1), 26-33.

Pamasaria, H. A., Herianto, H., & Saputra, T. H. (2019). Pengaruh Parameter Proses 3D Printing Tipe FDM (Fused Deposition Modeling) terhadap Kualitas Hasil Produk. IENACO (Industrial Engineering National Conference) 7 2019.

Setyoadi, Y., Carsoni, C., Amiruddin, M., & Harjanto, I. (2016, January). Perancangan Dan Manufaktur Printer 3 Dimensi Tipe Fused Deposition Modeling (FDM). Seminar Hasil-Hasil Penelitian 2015, Universitas PGRI Semarang.

Published
2024-02-14
How to Cite
Setyoadi, Y., Hermana, R., Hakim, R., Riyadi, A., & Widiastuti, H. (2024). Perancangan dan Analisis Performa 3D Printer Cartesian. Jurnal Teknologi Dan Riset Terapan (JATRA), 5(2), 50-54. https://doi.org/10.30871/jatra.v5i2.5057

Most read articles by the same author(s)