Classification For Determining Nutritional Status of Toddlers Using Random Forest Method at Tanah Pasir Primary Health Centre, North Aceh
DOI:
https://doi.org/10.30871/jaic.v9i6.10855Keywords:
Toddler Nutrition Status, Random Forest, Data Mining, ClassificationAbstract
The nutritional status of toddlers is a fundamental factor in supporting their growth and development, particularly during the golden period of 0–5 years of age. Malnutrition in toddlers can have detrimental effects on physical growth, cognitive development, and immune function. In Indonesia, child malnutrition remains a significant public health challenge, particularly in rural areas, necessitating improved nutritional surveillance systems at primary health centers. The manual assessment of nutritional status at community health centers (Puskesmas) often poses challenges in promptly identifying toddlers with undernutrition or severe malnutrition. This study aims to develop a toddler nutritional status classification system based on the Random Forest method to assist healthcare workers in determining nutritional status quickly and accurately. This study utilized a dataset of 2,612 toddler anthropometric records collected from Tanah Pasir Community Health Center, North Aceh, between November 2024 and January 2025. The dataset was split into training (2,090 records, 80%) and testing (522 records, 20%) sets using stratified random sampling. Key variables included age (0-60 months), body weight (kg), and body height (cm). Nutritional status categories were determined based on WHO Child Growth Standards using the weight-for-age (W/A), height-for-age (H/A), and weight-for-height (W/H) indices. The Random Forest method was chosen due to its ability to construct multiple decision trees through ensemble learning, resulting in more accurate predictions and better resistance to overfitting. The model was implemented with 100 trees and evaluated using standard classification metrics. The experimental results demonstrated that the system achieved strong classification performance, with an accuracy of 93%, precision of 95%, recall of 98%, and an F1-score of 96%. The high recall value is particularly significant in healthcare applications, ensuring minimal false negatives in detecting malnourished toddlers. The developed system facilitates healthcare workers in efficiently and systematically monitoring toddlers' nutritional status with consistent classification standards. Therefore, this system is expected to serve as a decision-support tool to improve community nutritional status at the community health center level, enabling early intervention for at-risk children.
Downloads
References
[1] E. N. Candra, I. Cholissodin, and R. C. Wihandika, “Klasifikasi Status Gizi Balita menggunakan Metode Optimasi Random Forest dengan Algoritme Genetika ( Studi Kasus : Puskesmas Cakru ),” vol. 6, no. 5, pp. 2188–2197, 2022.
[2] M. Muhammad, A. Mahmudi, and K. Auliasari, “Perbandingan Metode K-Means Dan K-Medoids Untuk Klasifikasi Status Gizi Anak,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 4, pp. 2122–2129, 2023, doi: 10.36040/jati.v7i4.7403.
[3] M. D. Chandra, E. Irawan, I. S. Saragih, A. P. Windarto, and D. Suhendro, “Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, pp. 30–38, 2021, doi: 10.37148/bios.v2i1.19.
[4] C. Zai, “Implementasi Data Mining Sebagai Pengolahan Data,” 2022.
[5] B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner,” JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 1, Apr. 2021, doi: 10.30813/jbase.v4i1.2729.
[6] Fauziah, Dedy Hartama, and Irfan Sudahri Damanik, “Analisa Kepuasan Pelanggan Menggunakan Klasifikasi Data Mining,” Jurnal Penerapan Kecerdasan Buatan, 2020.
[7] D. M. Musa et al., “Penerapan Data Mining Untuk Klasifikasi Data Penjualan Pakan Ternak Terlaris Dengan Algoritma C4.5,” Jurnal Teknologi Informatika dan Komputer, vol. 10, no. 1, pp. 168–182, Mar. 2024, doi: 10.37012/jtik.v10i1.1985.
[8] B. W. K. Nurdin, “Implementasi Data Mining Untuk Mengklasifikasi Data Nasabah Pt. Adira Finance Aceh Tengah Menggunakan Algoritma C4.5,” Jurnal Sistem Informasi Kaputama (JSIK), vol. 1, no. 1, 2017.
[9] R. A. Wati, H. Irsyad, M. Ezar, and A. Rivan, “Klasifikasi Pneumonia Menggunakan Metode Support Vector Machine,” 2020.
[10] P. B. N. Setio, D. R. S. Saputro, and B. Winarno, “Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prosiding Seminar Nasional Matematika, vol. 3, pp. 64–71, 2020, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
[11] H. I. Islam, M. Khandava Mulyadien, U. Enri, U. Singaperbangsa, and K. Abstract, “Penerapan Algoritma C4.5 dalam Klasifikasi Status Gizi Balita,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 10, pp. 116–125, 2022, doi: 10.5281/zenodo.6791722.
[12] T. Wang, “Improved random forest classification model combined with C5.0 algorithm for vegetation feature analysis in non-agricultural environments,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-60066-x.
[13] B. Prasojo and E. Haryatmi, “Analisa Prediksi Kelayakan Pemberian Kredit Pinjaman dengan Metode Random Forest,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 7, no. 2, pp. 79–89, Sep. 2021, doi: 10.25077/teknosi.v7i2.2021.79-89.
[14] N. G. Ramadhan, F. D. Adhinata, A. J. T. Segara, and D. P. Rakhmadani, “Deteksi Berita Palsu Menggunakan Metode Random Forest dan Logistic Regression,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 2, p. 251, Apr. 2022, doi: 10.30865/jurikom.v9i2.3979.
[15] A. P. Ruise, A. S. Mashuri, M. Sulaiman, and F. Rahman, “Studi Komparasi Metode Svm, Logistic Regresion Dan Random Forest Clasifier Untuk Mengklasifikasi Fake News di Twitter,” J I M P - Jurnal Informatika Merdeka Pasuruan, vol. 7, no. 2, p. 64, Sep. 2023, doi: 10.51213/jimp.v7i2.472.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Indana Sofyan Iryad, Mukti Qamal, Ar Razi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








