Balancing Student Specialization Class Placement Based on Interests and Talents Using K-Means Clustering and Genetic Algorithm

Authors

  • Chaidir Chalaf Islamy Universitas 17 Agustus 1945 Surabaya
  • Muhammad Andika Oktaviansyah Universitas 17 Agustus 1945 Surabaya

DOI:

https://doi.org/10.30871/jaic.v9i6.10425

Keywords:

Genetic Algorithm, K-Means Clustering, RIASEC, School Optimization, Student Placement

Abstract

Student specialization placement in Indonesian secondary schools often produces imbalanced class distributions and misalignment between student interests and assigned tracks. This study develops a hybrid optimization system combining K-Means clustering and Genetic Algorithm (GA) to allocate 133 tenth-grade students from SMAN 1 Ngimbang into four specialization classes (Science, Mixed-Science, Mixed-Social, Social) while balancing operational constraints. Initial K-Means clustering (k=4, n_init=100) achieved a Silhouette Score of 0.287 but yielded severely imbalanced distribution (10, 51, 48, 24 students). GA optimization (population=300, generations=150, crossover=70%, mutation=10%, elitism=10%) with multi-component fitness function incorporating cosine similarity, distribution penalty, movement penalty, and entropy produced balanced classes (31, 35, 35, 32 students) within the 30-35 target range. Post-optimization metrics showed 73.7% retention rate, average match score of 0.792, entropy of 0.482, and execution time of 47.8 seconds. The Silhouette Score decreased to 0.080, reflecting an acceptable trade-off between cluster purity and operational feasibility. Sensitivity analysis confirmed weight configuration robustness. This system demonstrates practical applicability for real-time school implementation, reducing distribution gap by 90.2% while maintaining individual-class compatibility.

Downloads

Download data is not yet available.

References

[1] C. R. Sari, “Teknik Data Mining Menggunakan Classification Dalam Sistem Penunjang Keputusan Peminatan SMA Negeri 1 Polewali,” IJNS – Indones. J. Netw. Secur., vol. 5, no. 1, pp. 48–54, 2016, [Online]. Available: http://ijns.org/journal/index.php/ijns/article/view/1398

[2] M. Ayucedar, S. Suyoto, and E. Rusdianto, “Sistem Pendukung Keputusan Pemilihan Minat Bakat untuk Rekomendasi Karir dengan Metode Analytical Network Processing,” J. Inform. Atma Jogja, vol. 1, pp. 50–59, 2020, [Online]. Available: https://ojs.uajy.ac.id/index.php/jiaj/article/viewFile/3831/2181

[3] OECD, “PISA PISA 2022 Results Malaysia,” p. 10, 2022, [Online]. Available: https://www.oecd.org/publication/pisa-2022-results/country-notes/malaysia-1dbe2061/

[4] M. Muwakhidah, E. F. Mufidah, M. Mudhar, and M. Moesarofah, “Pemberian Layanan Tes Bakat dan Minat Karier Berdasarkan Teori Holland,” ABDI MOESTOPO J. Pengabdi. Pada Masy., vol. 6, no. 2, pp. 179–184, 2023, doi: 10.32509/abdimoestopo.v6i2.2734.

[5] L. Hidayat, W. F. Mahmudy, and P. Factor, “Pengelompokan Data Hasil Tes Kepribadian 16Pf Sopir Bus,” J. Teknol. Inf. dan Ilmu Komput. (JTIIK)., vol. 3, no. 3, pp. 163–168, 2016.

[6] A. Amrulloh and E. I. Sela, “Course scheduling optimization using genetic algorithm and tabu search,” J. Teknol. dan Sist. Komput., vol. 9, no. 3, pp. 157–166, 2021, doi: 10.14710/jtsiskom.2021.14137.

[7] D. Setiawan, R. N. Putri, and R. Suryanita, “Implementasi Algoritma Genetika Untuk Prediksi Penyakit Autoimun,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 4, no. 1, pp. 8–16, 2019, doi: 10.36341/rabit.v4i1.595.

[8] Mg. Rohman, K. Yahya, and P. H. Susilo, “Implementasi Algoritma K-means Clustering pada Pengelompokan Data Kepuasan Penggunaan E-learning,” Gener. J., vol. 8, no. 2, pp. 81–92, 2024, doi: 10.29407/gj.v8i2.22730.

[9] M. B. A.- Zoubi and M. al Rawi, “An efficient approach for computing silhouette coefficients,” J. Comput. Sci., vol. 4, no. 3, p. 252, 2008.

[10] R. Hidayati, A. Zubair, A. Hidayat Pratama, and L. Indana, “Silhouette Coefficient Analysis in 6 Measuring Distances of K-Means Clustering,” Techno.Com, vol. 20, no. 2, pp. 186–197, 2021.

[11] D. W. Utomo and D. Kurniawan, “Formasi kelompok dinamis untuk mendukung kolaborasi pembelajaran proyek perangkat lunak,” J. Inov. Teknol. Pendidik., vol. 7, no. 1, pp. 42–51, 2020, doi: 10.21831/jitp.v7i1.31378.

[12] Aditia Yudhistira and Rio Andika, “Pengelompokan Data Nilai Siswa Madrasah Ta’Hiliyah Menggunakan Metode K-Means Clustering,” J. Ris. Sist. Inf., vol. 1, no. 1, pp. 53–59, 2023, doi: 10.69714/0v1pkz05.

[13] M. A. Oktaviansyah, “Data Hasil Pengumpulan Quisioner,” Kaggle.

[14] N. Valle, P. Antonenko, K. Dawson, and A. C. Huggins-Manley, “Staying on target: A systematic literature review on learner-facing learning analytics dashboards,” Br. J. Educ. Technol., vol. 52, no. 4, pp. 1724–1748, Jul. 2021, doi: https://doi.org/10.1111/bjet.13089.

[15] J. Ohliati and B. S. Abbas, “Measuring students satisfaction in using learning management system,” Int. J. Emerg. Technol. Learn., vol. 14, no. 4, pp. 180–189, 2019, doi: 10.3991/ijet.v14i04.9427.

[16] R. L. C. Silva Filho and P. J. L. Adeodato, “Data mining solution for assessing the secondary school students of brazilian federal institutes,” Proc. - 2019 Brazilian Conf. Intell. Syst. BRACIS 2019, no. May, pp. 574–579, 2019, doi: 10.1109/BRACIS.2019.00106.

[17] A. Montazami, H. Ann Pearson, A. Kenneth Dubé, G. Kacmaz, R. Wen, and S. Shajeen Alam, “Why this app? How educators choose a good educational app,” Comput. Educ., vol. 184, p. 104513, 2022, doi: https://doi.org/10.1016/j.compedu.2022.104513.

[18] Z. Chen, J. Li, H. Liu, X. Wang, H. Wang, and Q. Zheng, “Learning multi-scale features for speech emotion recognition with connection attention mechanism,” Expert Syst. Appl., vol. 214, p. 118943, 2023, doi: https://doi.org/10.1016/j.eswa.2022.118943.

[19] D. M. Goldenholz, H. Sun, W. Ganglberger, and M. B. Westover, “Sample Size Analysis for Machine Learning Clinical Validation Studies,” Biomedicines, vol. 11, no. 3, pp. 1–9, 2023, doi: 10.3390/biomedicines11030685.

[20] F. M. Siregar, U. Juhardi, M. Muntahanah, and A. K. Hidayah, “Comparative Analysis Of K Means And K Medoids Algorithms In Determining Social Assistance In Padang Sidimpuan City, North Sumatra,” J. Komputer, Inf. dan Teknol., vol. 4, no. 1, pp. 1–7, 2024, doi: 10.53697/jkomitek.v4i1.1795.

[21] M. A. K. Raiaan et al., “A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks,” Decis. Anal. J., vol. 11, no. March, p. 100470, 2024, doi: 10.1016/j.dajour.2024.100470.

[22] M. A. Oktaviansyah, “Data Hasil Akhir Optimalisasi,” Kaggle.

[23] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction,” Water Resour. Manag., vol. 20, no. 6, pp. 861–878, 2011.

[24] S. Wenren, W. Ding, Z. Wang, Y. Xia, R. Xie, and W. Li, “Reciprocal effects between reading comprehension and emotional cognitive ability,” Learn. Individ. Differ., vol. 109, p. 102398, 2024, doi: https://doi.org/10.1016/j.lindif.2023.102398.

Downloads

Published

2025-12-06

How to Cite

[1]
C. C. Islamy and M. A. Oktaviansyah, “Balancing Student Specialization Class Placement Based on Interests and Talents Using K-Means Clustering and Genetic Algorithm”, JAIC, vol. 9, no. 6, pp. 3220–3233, Dec. 2025.

Similar Articles

<< < 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.