A Comparative Study of Naïve Bayes and K-Nearest Neighbors (KNN) Algorithms in Sentiment Analysis of ChatGPT Usage Among Students
DOI:
https://doi.org/10.30871/jaee.v9i2.11464Kata Kunci:
ChatGPT, Classification, K-Nearest Neighbors, Naïve Bayes, Sentiment Analysis, StudentsAbstrak
Penelitian ini membandingkan kinerja algoritma Naïve Bayes dan K-Nearest Neighbors (KNN) dalam analisis sentimen mahasiswa Politeknik Negeri Lhokseumawe terhadap penggunaan ChatGPT. Perbandingan ini dilakukan karena penelitian sebelumnya menunjukkan hasil yang bervariasi, di mana efektivitas kedua algoritma sangat dipengaruhi oleh konteks dan jenis data. Model dikembangkan menggunakan 9.800 data eksternal dari Twitter dan Google Play Store yang diproses melalui tahapan praproses teks dan transformasi TF-IDF, kemudian diuji pada 237 data kuesioner mahasiswa sebagai studi kasus. Evaluasi awal memperlihatkan bahwa Naïve Bayes memperoleh akurasi 88% dengan waktu prediksi 0,0063 detik, sedangkan KNN mencatatkan akurasi 83% dengan waktu prediksi 0,4760 detik. Pada pengujian dengan data kuesioner, Naïve Bayes kembali unggul dengan akurasi 79,75% dibandingkan KNN yang hanya 49,37%. Temuan ini menegaskan bahwa Naïve Bayes lebih optimal untuk klasifikasi teks berbasis opini dalam konteks ini, serta dapat dijadikan pertimbangan dalam pengembangan kebijakan akademik terkait pemanfaatan kecerdasan buatan di pendidikan tinggi.
Unduhan
Referensi
[1] W. Suharmawan, “Pemanfaatan Chat GPT Dalam Dunia Pendidikan,” Education Journal : Journal Educational Research and Development, vol. 7, no. 2, pp. 158–166, Aug. 2023, doi: 10.31537/ej.v7i2.1248.
[2] O. F. Rizki and R. Fernandes, “Pengetahuan dan Pemanfaatan Chat GPT di Kalangan Mahasiswa (Studi Kasus: Mahasiswa Departemen Sosiologi Universitas Negeri Padang),” Naradidik: Journal of Education and Pedagogy, vol. 3, no. 3, pp. 222–228, Sep. 2024, doi: 10.24036/nara.v3i3.218.
[3] R. N. Yahya, S. N. Azizah, and Y. T. Herlambang, “Pemanfaatan ChatGPT di Kalangan Mahasiswa: Sebuah Tinjauan Etika Teknologi dalam Perspektif Filsafat,” UPGRADE : Jurnal Pendidikan Teknologi Informasi, vol. 1, no. 2, pp. 53–59, Feb. 2024, doi: 10.30812/upgrade.v1i2.3481.
[4] D. Dwihadiah, A. Gerungan, H. Purba, P. Studi Pendidikan Jarak Jauh Ilmu Komunikasi, and U. Pelita Harapan, “Penggunaan ChatGPT di Kalangan Mahasiswa dan Dosen Perguruan Tinggi Indonesia”.
[5] Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, pp. 1–7, Jan. 2023, doi: 10.35134/komtekinfo.v10i1.330.
[6] J. Khatib Sulaiman, A. Shopee Salman Alfaris, and U. Amikom Yogyakarta, “Komparasi Metode KNN dan Naive Bayes Terhadap Analisis Sentimen Pengguna,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 5, pp. 2023–2766.
[7] J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, pp. 1120–1126, Dec. 2021, doi: 10.29207/resti.v5i6.3588.
[8] F. Sholekhah, A. D. Putri, R. Rahmaddeni, and L. Efrizoni, “Perbandingan Algoritma Naïve Bayes dan K-Nearest Neighbors untuk Klasifikasi Metabolik Sindrom,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 507–514, Feb. 2024, doi: 10.57152/malcom. v4i2.1249.
[9] D. Nasien et al., “Perbandingan Implementasi Machine Learning Menggunakan Metode KNN, Naive Bayes, Dan Logistik Regression Untuk Mengklasifikasi Penyakit Diabetes,” 2024.
[10] R. Hidayat, A. Harjoko, and A. Musdholifah, “A Robust Image Retrieval Method Using Multi-Hierarchical Agglomerative Clustering and Davis-Bouldin Index,” International Journal of Intelligent Engineering and Systems, vol. 15, no. 2, pp. 441–453, Apr. 2022, doi: 10.22266/ijies2022.0430.40.
[11] H. B. Tambunan and T. W. D. Hapsari, “Analisis Opini Pengguna Aplikasi New PLN Mobile Menggunakan Text Mining,” PETIR, vol. 15, no. 1, pp. 121–134, Dec. 2021, doi: 10.33322/petir.v15i1.1352.
[12] F. Sholekhah, A. D. Putri, and L. Efrizoni, “Comparison of Naive Bayes and K-Nearest Neighbors Algorithms for Metabolic Syndrome Classification Perbandingan Algoritma Naïve Bayes dan K-Nearest Neighbors untuk Klasifikasi Metabolik Sindrom,” Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. April, pp. 507–514, 2024.
[12] R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,” 2019. [Online]. Available: http://studentjournal.umpo.ac.id/index.php/komputek
[13] B. Mahesh, “Machine Learning Algorithms - A Review,” International Journal of Science and Research (IJSR), vol. 9, no. 1, pp. 381–386, Jan. 2020, doi: 10.21275/art20203995.
[14] I. Syahdana, R. Hidayat, M. Khadafi, and I. Artikel, “A Web-Based Laptop Purchase Recommendation Model Using Natural Language Processing (NLP ) on Marketplace Reviews,” vol. 4, no. 2, pp. 116–122, 2024, doi: 10.30811/jaise.v4i2.6133.
[15] B. Mahesh, “Machine Learning Algorithms - A Review,” International Journal of Science and Research (IJSR), vol. 9, no. 1, pp. 381–386, Jan. 2020, doi: 10.21275/art20203995.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Open Access Policy
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself.









