Comparative Study of YOLOv5, YOLOv7 and YOLOv8 for Robust Outdoor Detection

  • Ryan Satria Wijaya Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam,
  • Santonius Santonius Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam, Indonesia
  • Anugerah Wibisana Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam, Indonesia
  • Eko Rudiawan Jamzuri Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam, Indonesia
  • Mochamad Ari Bagus Nugroho Departemen Teknik Elektro, Politeknik Elektronika Negeri Surabaya, Surabaya
Keywords: Deep Learning algorithms, Object detection, YOLOv5, YOLOv7, YOLOv8

Abstract

Object detection is one of the most popular applications among young people, especially among millennials and generation Z. The use of object detection has become widespread in various aspects of daily life, such as face recognition, traffic management, and autonomous vehicles. The use of object detection has expanded in various aspects of daily life, such as face recognition, traffic management, and autonomous vehicles. To perform object detection, large and complex datasets are required. Therefore, this research addresses what object detection algorithms are suitable for object detection. In this research, i will compare the performance of several algorithms that are popular among young people, such as YOLOv5, YOLOv7, and YOLOv8 models. By conducting several Experiment Results such as Detection Results, Distance Traveled Experiment Results, Confusion Matrix, and Experiment Results on Validation Dataset, I aim to provide insight into the advantages and disadvantages of these algorithms. This comparison will help young researchers choose the most suitable algorithm for their object detection task.

Downloads

Download data is not yet available.

Author Biographies

Ryan Satria Wijaya, Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam,

Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam,

Santonius Santonius, Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam, Indonesia

Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam,

Anugerah Wibisana, Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam, Indonesia

Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam, Indonesia

Eko Rudiawan Jamzuri, Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam, Indonesia

Jurusan Teknik Elektro, Politeknik Negeri Batam, Batam, Indonesia

Mochamad Ari Bagus Nugroho, Departemen Teknik Elektro, Politeknik Elektronika Negeri Surabaya, Surabaya

Departemen Teknik Elektro, Politeknik Elektronika Negeri Surabaya, Surabaya

References

I. Purwita Sary, E. Ucok Armin, S. Andromeda, E. Engineering, and U. Singaperbangsa Karawang, “Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection Using Aerial Images,” Ultima Computing : Jurnal Sistem Komputer, vol. 15, no. 1, 2023.

S. Tyagi, P. Upadhyay, H. Fatima, S. Jain, I. Avinash, and K. Sharma, “American Sign Language Detection using YOLOv5 and YOLOv8,” 2023, doi: 10.21203/rs.3.rs-3126918/v1.

M. Henrique Fonseca Afonso et al., “Vehicle and Plate Detection for Intelligent Transport Systems: Performance Evaluation of Models YOLOv5 and YOLOv8”, doi: 10.13140/RG.2.2.11022.95042.

S. Tamang, B. Sen, A. Pradhan, K. Sharma, and V. K. Singh, “International Journal of Intelligent Systems And Applications In Engineering Enhancing COVID-19 Safety: Exploring YOLOv8 Object Detection for Accurate Face Mask Classification.” [Online]. Available: www.ijisae.org

X. Zhu, S. Lyu, X. Wang, and Q. Zhao, “TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios,” Aug. 2021, [Online]. Available: http://arxiv.org/abs/2108.11539

Z. Chen et al., “Plant Disease Recognition Model Based on Improved YOLOv5,” Agronomy, vol. 12, no. 2, Feb. 2022, doi: 10.3390/agronomy12020365.

X. Wang, H. Gao, Z. Jia, and Z. Li, “BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8,” Sensors (Basel), vol. 23, no. 20, Oct. 2023, doi: 10.3390/s23208361.

J. Yao, J. Qi, J. Zhang, H. Shao, J. Yang, and X. Li, “A real-time detection algorithm for kiwifruit defects based on yolov5,” Electronics (Switzerland), vol. 10, no. 14, Jul. 2021, doi: 10.3390/electronics10141711.

Z. Ren, H. Zhang, and Z. Li, “Improved YOLOv5 Network for Real-Time Object Detection in Vehicle-Mounted Camera Capture Scenarios,” Sensors, vol. 23, no. 10, May 2023, doi: 10.3390/s23104589.

M. Mahmud Rafi et al., “Performance Analysis of Deep Learning YOLO Models for South Asian Regional Vehicle Recognition.” [Online]. Available: www.ijacsa.thesai.org

A. Benjumea, I. Teeti, F. Cuzzolin, and A. Bradley, “YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles,” Dec. 2021, [Online]. Available: http://arxiv.org/abs/2112.11798

G. Oh and S. Lim, “One-Stage Brake Light Status Detection Based on YOLOv8,” Sensors, vol. 23, no. 17, Sep. 2023, doi: 10.3390/s23177436.

B. Xiao, M. Nguyen, and W. Q. Yan, “Fruit ripeness identification using YOLOv8 model,” Multimed Tools Appl, vol. 83, no. 9, pp. 28039–28056, Mar. 2024, doi: 10.1007/s11042-023-16570-9.

G. Yang, J. Wang, Z. Nie, H. Yang, and S. Yu, “A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention,” Agronomy, vol. 13, no. 7, Jul. 2023, doi: 10.3390/agronomy13071824.

A. Vats and D. C. Anastasiu, “Enhancing Retail Checkout through Video Inpainting, YOLOv8 Detection, and DeepSort Tracking,” 2023. [Online]. Available: https://github.com/davidanastasiu/RetailCounter

M. Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection,” Machines, vol. 11, no. 7. Multidisciplinary Digital Publishing Institute (MDPI), Jul. 01, 2023. doi: 10.3390/machines11070677.

R.-Y. Ju and W. Cai, “Fracture Detection in Pediatric Wrist Trauma X-ray Images Using YOLOv8 Algorithm,” Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.05071

S. Pandey, K.-F. Chen, and E. B. Dam, “Comprehensive Multimodal Segmentation in Medical Imaging: Combining YOLOv8 with SAM and HQ-SAM Models,” 2022.

T. Li, Y. Gao, K. Wang, S. Guo, H. Liu, and H. Kang, “Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening,” Inf Sci (N Y), vol. 501, pp. 511–522, Oct. 2019, doi: 10.1016/j.ins.2019.06.011.

Published
2024-06-24
How to Cite
Wijaya, R., Santonius, S., Wibisana, A., Jamzuri, E., & Nugroho, M. (2024). Comparative Study of YOLOv5, YOLOv7 and YOLOv8 for Robust Outdoor Detection. Journal of Applied Electrical Engineering, 8(1), 37-43. https://doi.org/10.30871/jaee.v8i1.7207
Section
Manuscripts