Prediction of Transformer Age Based on Temperature Due to Loading Using Linear Trend Method: Case Study of 60 MVA Transformer

  • Reza Sarwo Widagdo Department of Electrical Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya, Indonesia
  • Puji Slamet Department of Electrical Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya, Indonesiai
  • Muhammad Ubaidillah Department of Electrical Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya, Indonesia
Keywords: Linear Trend Methods, Power Transformer, Age Loss Prediction

Abstract

Power Transformers are one of the core equipment found in substations. Every year the need for electricity increases, so that the transformer can work optimally, the loading must also be considered. According to IEC 354, if the transformer is underload it is 100% stable at conditions around 20℃ and the winding temperature is 98℃, but if the ambient temperature is more than 20℃ then the life of the transformer will be reduced. In this research, the loading data used is a 60 MVA power transformer for 2020-2022, specifically to predict the age of the transformer from the load increase factor in the coming year using the linear trend method. The linear trend method aims to predict the burden in the following year and every year the burden increases. an increase of 2%. To find out the results of load forecasting, the prediction in 2030 has a life loss value of 1.2 p.u or the estimated remaining life of the power transformer is 1 year 6 months with a load of 88.64%.

Downloads

Download data is not yet available.

Author Biographies

Reza Sarwo Widagdo, Department of Electrical Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya, Indonesia

Department of Electrical Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya, Indonesia

Puji Slamet, Department of Electrical Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya, Indonesiai

Department of Electrical Engineering, Universitas 17 Agustus 1945 Surabaya, Indonesia

Muhammad Ubaidillah, Department of Electrical Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya, Indonesia

Department of Electrical Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya, Indonesia

References

Lee S Bin, Stone GC, Antonino-Daviu J, Gyftakis KN, Strangas EG, Maussion P, et al. Condition Monitoring of Industrial Electric Machines: State of the Art and Future Challenges. IEEE Ind Electron Mag. 2020;14(4):158–67.

Furse CM, Kafal M, Razzaghi R, Shin YJ. Fault Diagnosis for Electrical Systems and Power Networks: A Review. IEEE Sens J. 2021;21(2):888–906.

Yang H, Zhang K, Tang A. Risk Assessment of Main Electrical Connection in Substation with Regional Grid Safety Constraints. IEEE Access. 2022;10:27750–8.

Ge Q, Wang M, Jiang H, Lu Z, Yao G, Sun C. Health Management of Dry-Type Transformer Based on Broad Learning System. IEEE Trans Ind Electron. 2022;69(3):3027–36.

Abbasi AR. Fault detection and diagnosis in power transformers: a comprehensive review and classification of publications and methods. Electr Power Syst Res. 2022;209 (March):107990. Available from: https://doi.org/10.1016/j.epsr.2022.107990

Tamma WR, Prasojo RA, Suwarno. High voltage power transformer condition assessment considering the health index value and its decreasing rate. High Volt. 2021;6(2):314–27.

Foros J, Istad M. Health Index, Risk and Remaining Lifetime Estimation of Power Transformers. IEEE Trans Power Deliv. 2020;35(6):2612–20.

Zeinoddini-Meymand H, Kamel S, Khan B. An Efficient Approach with Application of Linear and Nonlinear Models for Evaluation of Power Transformer Health Index. IEEE Access. 2021;9:150172–86.

Badawi M, Ibrahim SA, Mansour DEA, El-Faraskoury AA, Ward SA, Mahmoud K, et al. Reliable Estimation for Health Index of Transformer Oil Based on Novel Combined Predictive Maintenance Techniques. IEEE Access. 2022;10:25954–72.

Li S, Wu G, Dong H, Yang L, Zhen X. Probabilistic health index-based apparent age estimation for power transformers. IEEE Access. 2020;8:9692–701.

Zhang Z, Song W, Li Q. Dual-Aspect Self-Attention Based on Transformer for Remaining Useful Life Prediction. IEEE Trans Instrum Meas. 2022;71:1–11.

Kanumuri D, Sharma V, Rahi OP. Analysis using various approaches for residual life estimation of power transformers. Int J Electr Eng Informatics. 2019;11(2):389–407.

Abdali A, Abedi A, Mazlumi K, Rabiee A, Guerrero JM. Novel Hotspot Temperature Prediction of Oil-Immersed Distribution Transformers: An Experimental Case Study. IEEE Trans Ind Electron. 2023;70(7):7310–22.

Sofyan S, Faraby MD, Naim K, Idris AR, Akhmad SS, Firmansyah H. Analysis of estimated age of distribution transformer against loading at ULP Panakkukang with the montsinger method. J Phys Conf Ser. 2023;2596(1).

Huang W, Shao C, Dong M, Hu B, Zhang W, Sun Y, et al. Modeling the Aging-dependent Reliability of Transformers Considering the Individualized Aging Threshold and Lifetime. IEEE Trans Power Deliv. 2022;37(6):4631–45.

Rizki, Y. Y., & Ervianto, E. (2019). Perkiraan umur transformator berdasarkan pengaruh pembebanan dan temperatur lingkungan menggunakan metode trend linear. Jurnal Online Mahasiswa (JOM) Bidang Teknik Dan Sains, 6, 1-8.

Muzar, M. A., Syahrizal, S., & Syukri, M. (2018). Analisis Pengaruh Suhu Akibat Pembebanan Terhadap Susut Umur Transformator Daya Di Gardu Induk Lambaro. Jurnal Komputer, Informasi Teknologi, dan Elektro, 3(2).

Kurniawan, K., & Firdaus, F. (2016). Studi Analisa Pengaruh Pembebanan Dan Temperatur Lingkungan Terhadap Susut Umur Tranformator Daya Pada Gardu Induk Garuda Sakti. Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains, 3(2), 1-6.

Suganda, Azzahra FH, Supriyadi E. Analisis Prediksi Usia Pakai Transformator Dengan Metode Regresi Linear. Sinusoida. 2022;XXIV:34–42.

Widagdo RS, Andriawan AH. Prediction of Age Loss on 160 KVA Transformer PT. PLN ULP Kenjeran Surabaya using The Linear Regression Method. J Ris Rekayasa Elektro. 2023;5(2):83.

Published
2024-06-24
How to Cite
Widagdo, R., Slamet, P., & Ubaidillah, M. (2024). Prediction of Transformer Age Based on Temperature Due to Loading Using Linear Trend Method: Case Study of 60 MVA Transformer. Journal of Applied Electrical Engineering, 8(1), 1-8. https://doi.org/10.30871/jaee.v8i1.6999
Section
Manuscripts