Project Based Learning: Sistem Otentifikasi melalui Deteksi Wajah untuk Akses Pintu Otomatis Berbasis Raspberry Pi
Abstract
Security concerns are of utmost importance in our daily lives. Conventional door locking systems that rely on physical keys possess vulnerabilities in terms of security. Physical keys are susceptible to tampering, theft, and effortless replication. Hence, it is imperative to devise a novel approach that may effectively mitigate this issue. An example of technological use for alternative locks involves utilizing face recognition techniques to grant or deny access to doors depending on the data associated with the individual seeking entry. The primary objective of this study is to create a facial identification approach by employing machine learning techniques, namely the histogram of oriented gradients (HOG) method in conjunction with a linear Support Vector Machine (SVM). This technique is designed to be easily implemented on a Raspberry Pi 4-based Single Board Computer (SBC) that features a video sensor for machine learning input and a doorlock solenoid output. Initially, it is important to train the machine learning algorithm to accurately identify and distinguish the individual who is granted access to the door. The facial data is obtained through the capture of photographs that encompass variations in facial expression, positioning, and lighting conditions. The facial data photos are further analyzed using machine learning techniques to generate a dataset algorithm model capable of accurately identifying faces. When the system is operational and identifies a face that closely matches the trained model, the Raspberry Pi will activate the doorlock solenoid to unlock the door, and conversely, to lock the door. This approach offers security benefits as it restricts access to only those individuals whose facial features are registered in the dataset, hence allowing them to unlock the door. The developed face detection system has an accuracy rate of 83% and is compatible with computing devices possessing constrained computational capabilities, such as the SBC Raspberry Pi 4.
Downloads
References
BPBATAM, "Kawasan industri di batam," 4 12 2023. [Online]. Available: https://bpbatam.go.id/kawasan-industri-di-batam/.
D. Aswini, R. Rohindh, K. S. M. Ragavendhara and C. S. Mridula, "Smart Door Locking System," in International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Coimbatore, India, 2021.
A. N. M. Erwan, M. N. H. M. Alfian and M. S. M. Adenan, "Smart Door Lock," International Journal of Recent Technology and Applied Science (IJORTAS), vol. 3, no. 1, pp. 1-15, 2021.
J. Baikerikar, V. Kavathekar, N. Ghavate, R. Sawant and K. Madan, "Smart Door Locking Mechanism," in International Conference on Nascent Technologies in Engineering (ICNTE), NaviMumbai, India, 2021.
R. Tullah, S. D. Hapid and J. A. Suwandara, "AUTOMATIC LOCK DOOR WITH VOICE COMMANDS ON ARDUINO-BASED ANDROID," JURNAL SISFOTEK GLOBAL, vol. 11, no. 2, pp. 82 - 88, 2021.
L. D. W. Raj, K. Santhosh, S. Subash, C. Sujin and P. Tharun, "Voice Controlled Door Lock System Using Matlab and Arduino," in International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 2019.
I. P. Ihsan, S. Buwarda, H. Novianty and I. A. Putra, "Voice Recognition Untuk Otomatisasi Sistem Pengakses Pintu," JSAI (Journal Scientific and Applied Informatics), vol. 4, no. 1, pp. 116-125, 2021.
H. Isyanto, W. Ibrahim and M. A. Hidayatulloh, "Desain Kunci Pintu Fingerprint Pada Ruangan Khusus (Restricted Area)," in Seminar Nasional Sains dan Teknologi, Jakarta, 2019.
A. Z. Rohman, Sunardi and A. Munazilin, "Rancang Bangun Smart door lock Menggunakan Fingerprint dan Mikrokontroler Arduino Uno di BMT NU Jangkar," G-Tech Jurnal Teknologi Terapan, vol. 7, no. 4, pp. 1245-1253, 2023.
K. Y. Sun, Y. Pernando and M. I. Safari, "PERANCANGAN SISTEM IoT PADA SMART DOOR LOCK," JUTSI: Jurnal Teknologi dan Sistem Informasi, vol. 1, no. 3, pp. 289 - 296, 2021.
K. Prihandani and A. S. Y. Irawan, "Door Lock Berbasis Internet of Things," SYSTEMATICS, vol. 1, no. 1, pp. 22-32, 2019.
R. F. N. Susilo and S. F. Athallah, "Penggunaan Artificial Intelligence (AI) dalam Membangun Sistem Pangan Berkelanjutan di Indonesia," Jurnal Imagine, vol. 3, no. 2, pp. 104-116, 2023.
A. T. Dwilaga, "IMPLEMENTASI MODEL ARTIFICIAL INTELLIGENCE DALAM WAREHOUSE:," Jurnal Sistem Dan Teknik Industri, vol. 3, no. 2, pp. 253-261, 2022.
T. Wahyudi, "Studi Kasus Pengembangan dan Penggunaan Artificial," Indonesian Journal on Software Engineering, vol. 9, no. 1, pp. 28-32, 2023.
G. D. Jupri, Rosandi and P. Rosyani, "Implementasi Artificial Intelligence Pada Sistem Manufaktur Terintegrasi," BISIK : Jurnal Ilmu Komputer, Hukum, Kesehatan, dan SosHum , vol. 1, no. 2, pp. 140-143, 2022.
A. L. Perdana, Suharni and A. Riadi, "PENGENALAN EKSPRESI WAJAH PENGUNJUNG DEAL COFFEE MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)," Jurnal of Embedded System and Inelligent System, vol. 4, no. 2, pp. 132-139, 2023.
M. F. Aditama and M. Haryanti, "SISTEM PENGENALAN DAN VERIFIKASI WAJAH," Jurnal Teknologi Industri, vol. 12, no. 1, pp. 30-39, 2023.
T. Arifianto, "PENGEMBANGAN SISTEM PENGENALAN WAJAH BERBASIS DEEP LEARNING UNTUK KEAMANAN KOMPUTER," Jurnal Review Pendidikan dan Pengajaran, vol. 7, no. 2, pp. 3934-3940, 2024.
H. A. Faiq and H. Sabita, "Pengembangan Model Deep Learning Untuk Pengenalan Wajah pada Sistem Keamanan," Jurnal Teknika, vol. 18, no. 1, pp. 197-209, 2024.
S. Syarif, M. Baharuddin and Muslimin, "Penerapan Metode Convolutional Neural Network pada Face Recognition untuk Smart Loker," Jurnal Eksitasi, vol. 2, no. 2, pp. 19-26, 2023.