PENGARUH JENIS ELEKTRODA RD DAN LB E6010 TERHADAP LAJU KOROSI SAMBUNGAN LAS SMAW PADA BAJA RINGAN DALAM MEDIA AIR LAUT

Authors

  • Muh Yusril Syam Program Studi Teknik Perkapalan, Politeknik Batulicin
  • Ainun Chandra Puspa Nigrum Program Studi Teknik Perkapalan, Politeknik Batulicin

DOI:

https://doi.org/10.30871/jatra.v7i2.10981

Keywords:

Lightweight steel, SMAW, E6010 Electrode, Corrosion, Seawater

Abstract

Mild steel is widely used in construction because it is lightweight and economical, but it is susceptible to corrosion, especially in marine environments with high chloride ion content. Shielded Metal Arc Welding (SMAW) welded joints are vulnerable due to microstructural changes and weld defects that accelerate damage. This study aims to analyse the effect of RD and LB E6010 electrodes on the corrosion rate of mild steel welded joints in seawater. The research method involved welding 1.5 mm galvanised steel using 70–90 amps of current with the stringer bead technique. The samples were then immersed for 21 days in seawater from Pagatan Beach, South Kalimantan, and tested using the weight loss method. The test results showed that the RD electrode had a corrosion rate of 0.83 mm/year, which was lower than that of the LB electrode at 1.11 mm/year. This difference was influenced by weld defects, where the LB electrode produced more porosity, slag inclusion, and pitting corrosion. Based on the ASTM G46 classification, both values fall into the moderate category. It can be concluded that the use of RD electrodes is highly recommended for light steel joining applications in marine environments, given their superior corrosion resistance.

Downloads

Download data is not yet available.

References

[1] H. Zones, H. D. R. Duplex, S. Steel, X. Liu, Y. Hu, and N. Liu, “Effect of Welding Current on Corrosion Resistance of,” pp. 1–10, 2024.

[2] H. Pratikno, H. S. Titah, and M. S. Azdkar, “Effect of Electrode Type for SMAW Welding on ASTM A36 Steel to Reduce Bio-corrosion Rate in Marine Environment Preparation of Steel Material of,” no. Isoceen 2018, pp. 165–169, 2020, doi: 10.5220/0008649801650169.

[3] F. B. Nduru and N. Y. Nugroho, “Effect of Air Humidity in MIG Welded Joints on Tensile Strength and Impact Strength of Aluminum 5052,” Berk. Sainstek, vol. 11, no. 2, p. 129, 2023, doi: 10.19184/bst.v11i2.37546.

[4] D. P. Sari, A. Arifin, G. Gunawan, D. Adanta, I. Asura, and I. Syofii, “Flow Rate Effects on Microstructure and Mechanical Properties for Titanium Weld Joint,” J. Energy, Mech. Mater. Manuf. Eng., vol. 6, no. 3, pp. 189–196, 2021, doi: 10.22219/jemmme.v6i3.19082.

[5] P. Varalakshmi, K. Manohar, K. Mallikarjun, and K. Lokesh, “Performance and Analysis of Weld Joint by using Two Dissimilar Electrodes E6010 and E7018,” pp. 919–923, 2019.

[6] K. Fecl, G. Anggaretno, and I. Rochani, “Analisa Pengaruh Jenis Elektroda terhadap Laju Korosi pada Pengelasan Pipa API 5L Grade X65,” vol. 1, no. 1, pp. 3–7, 2012.

[7] E. Surojo, N. I. Wicaksana, Y. C. N. Saputro, E. P. Budiana, and N. Muhayat, “applied sciences E ff ect of Welding Parameter on the Corrosion Rate of Underwater Wet Welded SS400 Low Carbon Steel,” 2020.

[8] F. Gapsari, P. H. Setyarini, F. Kurniawan, A. Ahnaf, M. Syaiful, and U. Khairi, “South African Journal of Chemical Engineering Corrosion inhibition of weldment by Nephelium lappaceum peel extract in 3 . 5 % NaCl solution,” South African J. Chem. Eng., vol. 41, no. December 2021, pp. 223–232, 2022, doi: 10.1016/j.sajce.2022.06.006.

[9] M. Sajjadnejad, H. Omidvar, and A. Hosseini, “Materials Chemistry and Mechanics Materials Chemistry and Mechanics Corrosion behavior of the weld region in carbon steels with rutile , cellulose and alkaline electrodes in marine environments,” vol. 3, no. July, pp. 1–11, 2025.

[10] A. Setiyo Umartono and D. Setiawan, “Analisa Laju Korosi Material Stainless Steel Grade SS304 dan Alloy UNS N08020 Terhadap Asam Sulfat dan Natrium Hidroksida,” Anal. Laju Korosi Mater. Stain. Steel SS3043 dan Alloy UNS N08020 Terhadap Asam Sulfat dan Natrium Hiroksida, vol. 09, pp. 1–5, 2020.

[11] S. Guide, “Standard Guide for Laboratory Immersion Corrosion Testing of Metals 1,” vol. i, pp. 1–3, 2021, doi: 10.1520/G0031-21.2.

[12] J. Jiang, N. Li, B. Wang, F. Liu, C. Liu, and X. Cheng, “A Study on the Influence of Different Defect Types on the Corrosion Behavior of Q235/TA2 Composite Plates in a Marine Environment,” Metals (Basel)., vol. 14, no. 6, 2024, doi: 10.3390/met14060652.

[13] S. Kamel and N. S. El-Sayed, “Cellulose and its Derivatives: Towards Green Inhibitors of Metal Corrosion,” Egypt. J. Chem., vol. 66, no. 13, pp. 2119–2139, 2023, doi: 10.21608/EJCHEM.2023.209188.7939.

[14] M. M. Ali and M. M. Kh, “Effects Of Welding Parameters On Characterization And Mechanical Properties Of Steel 37 Weldments,” J. Eng. Sci., vol. 48, no. 2, pp. 212–221, 2020, doi: 10.21608/jesaun.2020.188012.

[15] Z. Guo, S. Hu, D. Bai, and P. Jiang, “Weld quality and dynamic corrosion behavior of ship pipeline systems,” AIP Adv., vol. 15, no. 2, 2025, doi: 10.1063/5.0252854.

[16] F. Malaret, “Semi-Quantitative Categorization Method for the Corrosion Behavior of Metals Based on Immersion Test,” Metals (Basel)., vol. 14, no. 4, 2024, doi: 10.3390/met14040409.

[17] “Mars Fontana-Corrosion Engineering(www.iranidata.com)_copy.pdf,” 1987, McGraw-Hill Book Company, New York.

Published

2025-12-30

How to Cite

Syam, M. Y., & Ainun Chandra Puspa Nigrum. (2025). PENGARUH JENIS ELEKTRODA RD DAN LB E6010 TERHADAP LAJU KOROSI SAMBUNGAN LAS SMAW PADA BAJA RINGAN DALAM MEDIA AIR LAUT. Jurnal Teknologi Dan Riset Terapan (JATRA), 7(2), 37–43. https://doi.org/10.30871/jatra.v7i2.10981