Media Pembelajaran Pengenalan Citra Pesawat Udara Dengan Memanfaatkan Metode Jaringan Saraf Tiruan
DOI:
https://doi.org/10.30871/jatra.v6i2.8885Keywords:
Classification, Image processing, Aircraft, Artificial Neural Network, Probabilistic Neural Network.Abstract
This study developed an image classification model to help learn the recognition of aircraft types using the Probabilistic Neural Network (PNN) method, one of the techniques in artificial neural networks that is often used for image classification. PNN works by classifying categories based on the calculation of the distance between the concentration and probability functions. In the process, PNN consists of four main stages: Input Layer, Pattern Layer, Summation Layer, and Output Layer. This study used 90 test data from three different object classes taken from the available data sets. The test results show that the application of the PNN algorithm in aircraft image classification provides an average accuracy of 81.11 %, which is quite promising to be applied as a learning module for the introduction of aircraft types for Aircraft Maintenance Engineering students at the Batam State Polytechnic. The results of this study show that the PNN method has great potential to help automatic classification and can be optimized to improve the accuracy of classification in further learning.
Downloads
References
[2] U. Erdiansyah, A. I. Lubis, and G. Syahputra, "Klasifikasi Penyakit Diabetic Retinopathy Menggunakan Multilayer Perceptron," JAISE J. Artif. Intell. Softw. Eng., vol. 2, no. 1, pp. 1"“6, 2022.
[3] S. J. Siregar, A. I. Lubis, and E. F. Ginting, "Penerapan Neural Network Dalam Klasifikasi Citra Permainan Batu Kertas Gunting dengan Probabilistic Neural Network," Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 420"“425, 2021, doi: 10.47065/bits.v3i3.1143.
[4] Y. Sari, M. Alkaff, and M. Arif Rahman, "Identifikasi Penyakit Tanaman Ubi Kayu Berdasarkan Citra Daun Menggunakan Metode Probabilistic Neural Network (PNN)," J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 1"“9, 2021, doi: 10.31603/komtika.v5i1.4605.
[5] F. Alfiyan, "Pengaruh Perbedaan Kernel Edge Detection Kirsch Pada Sketching Citra Digital Dengan Bahasa Pemrograman Matlab," J. Teknol. Inf. RESPATI, vol. XIII, no. November, pp. 1"“8, 2017, [Online]. Available: http://jti.respati.ac.id/index.php/jurnaljti/article/view/190
[6] A. I. Lubis and R. Chandra, "Forward Selection Attribute Reduction Technique for Optimizing Naïve Bayes Performance in Sperm Fertility Prediction," Sinkron, vol. 8, no. 1, pp. 275"“285, 2023, doi: 10.33395/sinkron.v8i1.11967.
[7] E. T. Wijaya and I. W. Al Farqi, "Aplikasi Pengenalan Aksara Carakan Madura Dengan Menggunakan Metode Backpropagation," J. Ilm. Teknol. Inf. Asia, vol. 9, no. 1, pp. 18"“34, 2015.
[8] N. M. Sasi and V. K. Jayasree, "Contrast Limited Adaptive Histogram Equalization for Qualitative Enhancement of Myocardial Perfusion Images," Engineering, vol. 05, no. 10, pp. 326"“331, 2013, doi: 10.4236/eng.2013.510b066.
[9] Y. Chang, C. Jung, P. Ke, H. Song, and J. Hwang, "Automatic Contrast-Limited Adaptive Histogram Equalization with Dual Gamma Correction," IEEE Access, vol. 6, no. c, pp. 11782"“11792, 2018, doi: 10.1109/ACCESS.2018.2797872.
[10] S. A. Hammam, T. W. Purboyo, and R. E. Saputra, "Cotton texture segmentation based on image texture analysis using gray level run length and euclidean distance," J. Theor. Appl. Inf. Technol., vol. 95, no. 24, pp. 6915"“6923, 2017.
[11] A. Kadir, L. E. Nugroho, A. Susanto, and P. I. Santosa, "Leaf Classification Using Shape, Color, and Texture Features," pp. 225"“230, 2013, [Online]. Available: http://arxiv.org/abs/1401.4447
[12] F. H. Mahmood and W. A. Abbas, "Texture Features Analysis using Gray Level Co-occurrence Matrix for Abnormality Detection in Chest CT Images," Abbas Iraqi J. Sci., vol. 57, no. 1A, pp. 279"“288, 2016.
[13] S. Singh, D. Srivastava, and S. Agarwal, "GLCM and its application in pattern recognition," 5th Int. Symp. Comput. Bus. Intell. ISCBI 2017, pp. 20"“25, 2017, doi: 10.1109/ISCBI.2017.8053537.
[14] K. S. Ahmad, A. S. Thosar, J. H. Nirmal, and V. S. Pande, "A unique approach in text independent speaker recognition using MFCC feature sets and probabilistic neural network," ICAPR 2015 - 2015 8th Int. Conf. Adv. Pattern Recognit., 2015, doi: 10.1109/ICAPR.2015.7050669.
[15] A. T. Azar and S. A. El-Said, "Probabilistic neural network for breast cancer classification," Neural Comput. Appl., vol. 23, no. 6, pp. 1737"“1751, 2013, doi: 10.1007/s00521-012-1134-8.
[16] M. Kusy and P. A. Kowalski, "Weighted probabilistic neural network," Inf. Sci. (Ny)., vol. 430"“431, pp. 65"“76, 2018, doi: 10.1016/j.ins.2017.11.036.
[17] M. N. Mohanty and H. K. Palo, "Child emotion recognition using probabilistic neural network with effective features," Meas. J. Int. Meas. Confed., vol. 152, p. 107369, 2020, doi: 10.1016/j.measurement.2019.107369.
[18] R. Chandra, E. B. Nababan, and Sawaluddin, "Identifikasi Penyakit Diabetic Retinopathy menggunakan Learning Vector Quantization ( LVQ )," InfoTekJar J. Nas. Inform. dan Jar., vol. 1, no. 6, pp. 0"“5, 2021.
[19] U. Erdiansyah, A. Irmansyah Lubis, and K. Erwansyah, "Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil," J. Media Inform. Budidarma, vol. 6, no. 1, p. 208, 2022, doi: 10.30865/mib.v6i1.3373.
[20] A. I. Lubis, U. Erdiansyah, and R. Siregar, "Komparasi Akurasi pada Naive Bayes dan Random Forest dalam Klasifikasi Penyakit Liver," J. Comput. Eng. Syst. Sci., vol. 7, no. 1, pp. 81"“89, 2022.
[21] A. I. Lubis, S. Sibagariang, and N. Ardi, "Classification of Alzheimer Disease from MRI Image Using Combination Naïve Bayes and Invariant Moment," Proc. 5th Int. Conf. Appl. Eng. ICAE 2022, 5 Oct. 2022, Batam, Indones., pp. 1"“12, 2023, doi: 10.4108/eai.5-10-2022.2327750.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.