Trajectory Planning pada Case packer Delta Robot dengan Interpolasi Polinomial Kubik

Authors

  • Dwiky Fajri Syahbana Departemen Teknik Elektro Otomasi, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Bramasta Triananda Putra Departemen Teknik Elektro Otomasi, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Imam Arifin Departemen Teknik Elektro, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

DOI:

https://doi.org/10.30871/jaee.v9i1.9571

Keywords:

Inverse kinematics, Pick-and-Place, Polinomial kubik, Trajectory planning

Abstract

Mekanisme pick and place dinamis untuk pemindahan objek umumnya menggunakan robot paralel, seperti Delta robot 3-axis, yang membutuhkan koordinasi sistem yang teratur dan bekerja dengan cepat. Objek dijalankan melalui konveyor infeed secara kontinyu sehingga robot perlu bergerak dengan cepat dan tepat agar tidak ada produk yang terlewat. Dengan trajectory planning robot, resiko produk tidak terambil dapat diminimalkan. Dalam suatu kasus di sebuah industri, selama 10 menit hanya memiliki pick rate 82%, masih di bawah target standar, 90%. Dalam artikel ini dijelaskan implementasi metode interpolasi polinomial kubik dan inverse kinematic untuk membuat trajectory planning. Pengembangan metode baru dengan modifikasi gerakan robot lebih efisien dibandingkan dengan metode sebelumnya. Rangkaian gerakan robot awal dipangkas dari 5 menjadi 4 gerakan, menghasilkan lintasan yang lebih pendek dan mengurangi waktu bergerak yang tidak diperlukan. Dengan penggunaan metode tersebut didapatkan hasil simulasi pick rate produk sebesar 91,7% dan sudah melampaui target yang ditentukan.

Downloads

Download data is not yet available.

References

[1] Q. Zu, Q. Liu, and J. Wu, “Dynamic Pick and Place Trajectory of Delta Parallel Manipulator,” in Human Centered Computing, Q. Zu, Y. Tang, and V. Mladenovic, Eds., 2021, pp. 1–11. doi: 10.1007/978-3-030-70626-5_1.

[2] D. Zhu, Y. He, X. Yu, and F. Li, “Trajectory Smoothing Planning of Delta Parallel Robot Combining Cartesian and Joint Space,” Mathematics, vol. 11, no. 21, Nov. 2023, doi: 10.3390/math11214509.

[3] T. Li, Y. Zhang, and J. Zhou, “Trajectory planning of high precision collaborative robots,” CMES - Computer Modeling in Engineering and Sciences, vol. 118, no. 3, pp. 583–598, 2019, doi: 10.31614/cmes.2018.04891.

[4] Y. Li, J. Wang, and Y. Ji, “Function Analysis of Industrial Robot under Cubic Polynomial Interpolation in Animation Simulation Environment,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 4, p. 105, 2020, doi: 10.9781/ijimai.2020.11.012.

[5] H. Wang, Q. Zhao, H. Li, and R. Zhao, “Polynomial-based smooth trajectory planning for fruit-picking robot manipulator,” Information Processing in Agriculture, vol. 9, no. 1, pp. 112–122, Mar. 2022, doi: 10.1016/j.inpa.2021.08.001.

[6] N. Minh Tuan, T.-T. Vuong, T.-P. Nguyen, and M.-T. Nguyen, “Smooth and Time Optimization Trajectory Planning For Robots Using Polynomial Interpolation”, [Online]. Available: https://www.researchgate.net/publication/384839338

[7] T. Prima Satya, J. Hendry, A. Putra Yudhananta, and Z. F. Bagus Meliawan, “Cheap and Fast Implementation of Linear and Cubic Piecewise Interpolation for Robot Path Smoothing on Arduino Uno Board,” JuLIET), vol. 3, no. 2, 2022.

[8] S. Kang and W. Chou, “Kinematic Analysis, Simulation and Manipulating of a 5-DOF Robotic Manipulator for Service Robot,” in 2019 IEEE International Conference on Mechatronics and Automation (ICMA), IEEE, Aug. 2019, pp. 643–649. doi: 10.1109/ICMA.2019.8816413.

[9] R. Ghaedrahmati and C. Gosselin, “Kinematic Analysis of a New 3-DOF Parallel Wrist-Gripper Assembly with a Large Singularity-Free Workspace,” Actuators, vol. 12, no. 11, Nov. 2023, doi: 10.3390/act12110421.

[10] A. H. Dastjerdi, M. M. Sheikhi, and M. T. Masouleh, “A complete analytical solution for the dimensional synthesis of 3-DOF delta parallel robot for a prescribed workspace,” Mech Mach Theory, vol. 153, Nov. 2020, doi: 10.1016/j.mechmachtheory.2020.103991.

[11] S. Pakzad, S. Akhbari, and M. Mahboubkhah, “Kinematic and dynamic analyses of a novel 4-DOF parallel mechanism,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 12, Dec. 2019, doi: 10.1007/s40430-019-2058-3.

[12] G. Li, J. Song, W. Zhang, and Q. Wu, “Trajectory Planning of 6-DOF Manipulator Based on Joint Space,” in 2024 7th International Conference on Advanced Algorithms and Control Engineering, ICAACE 2024, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 1369–1372. doi: 10.1109/ICAACE61206.2024.10548112.

[13] A. Gholami, T. Homayouni, R. Ehsani, and J. Q. Sun, “Inverse kinematic control of a delta robot using neural networks in real-time,” Robotics, vol. 10, no. 4, Dec. 2021, doi: 10.3390/robotics10040115.

[14] H. Afrisal, A. L. Hakim, M. J. Shiddiq, and I. Setiawan, “Position Control and Trajectory Planning of 3-DOF Arm Manipulator for Test Tube Handling,” in 2019 International Biomedical Instrumentation and Technology Conference (IBITeC), IEEE, Oct. 2019, pp. 52–57. doi: 10.1109/IBITeC46597.2019.9091714.

[15] L. Shijie, “Research Progress on Trajectory Planning of Industrial Robots,” Current Journal of Applied Science and Technology, vol. 42, no. 2, pp. 25–36, Feb. 2023, doi: 10.9734/cjast/2023/v42i24052.

Downloads

Published

2025-06-28 — Updated on 2025-06-28

Versions

How to Cite

Syahbana, D. F., Bramasta Triananda Putra, & Imam Arifin. (2025). Trajectory Planning pada Case packer Delta Robot dengan Interpolasi Polinomial Kubik. Journal of Applied Electrical Engineering, 9(1), 115–121. https://doi.org/10.30871/jaee.v9i1.9571

Issue

Section

Manuscripts

Similar Articles

You may also start an advanced similarity search for this article.