Trajectory Planning pada Case packer Delta Robot dengan Interpolasi Polinomial Kubik
DOI:
https://doi.org/10.30871/jaee.v9i1.9571Keywords:
Inverse kinematics, Pick-and-Place, Polinomial kubik, Trajectory planningAbstract
Mekanisme pick and place dinamis untuk pemindahan objek umumnya menggunakan robot paralel, seperti Delta robot 3-axis, yang membutuhkan koordinasi sistem yang teratur dan bekerja dengan cepat. Objek dijalankan melalui konveyor infeed secara kontinyu sehingga robot perlu bergerak dengan cepat dan tepat agar tidak ada produk yang terlewat. Dengan trajectory planning robot, resiko produk tidak terambil dapat diminimalkan. Dalam suatu kasus di sebuah industri, selama 10 menit hanya memiliki pick rate 82%, masih di bawah target standar, 90%. Dalam artikel ini dijelaskan implementasi metode interpolasi polinomial kubik dan inverse kinematic untuk membuat trajectory planning. Pengembangan metode baru dengan modifikasi gerakan robot lebih efisien dibandingkan dengan metode sebelumnya. Rangkaian gerakan robot awal dipangkas dari 5 menjadi 4 gerakan, menghasilkan lintasan yang lebih pendek dan mengurangi waktu bergerak yang tidak diperlukan. Dengan penggunaan metode tersebut didapatkan hasil simulasi pick rate produk sebesar 91,7% dan sudah melampaui target yang ditentukan.
Downloads
References
[1] Q. Zu, Q. Liu, and J. Wu, “Dynamic Pick and Place Trajectory of Delta Parallel Manipulator,” in Human Centered Computing, Q. Zu, Y. Tang, and V. Mladenovic, Eds., 2021, pp. 1–11. doi: 10.1007/978-3-030-70626-5_1.
[2] D. Zhu, Y. He, X. Yu, and F. Li, “Trajectory Smoothing Planning of Delta Parallel Robot Combining Cartesian and Joint Space,” Mathematics, vol. 11, no. 21, Nov. 2023, doi: 10.3390/math11214509.
[3] T. Li, Y. Zhang, and J. Zhou, “Trajectory planning of high precision collaborative robots,” CMES - Computer Modeling in Engineering and Sciences, vol. 118, no. 3, pp. 583–598, 2019, doi: 10.31614/cmes.2018.04891.
[4] Y. Li, J. Wang, and Y. Ji, “Function Analysis of Industrial Robot under Cubic Polynomial Interpolation in Animation Simulation Environment,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 4, p. 105, 2020, doi: 10.9781/ijimai.2020.11.012.
[5] H. Wang, Q. Zhao, H. Li, and R. Zhao, “Polynomial-based smooth trajectory planning for fruit-picking robot manipulator,” Information Processing in Agriculture, vol. 9, no. 1, pp. 112–122, Mar. 2022, doi: 10.1016/j.inpa.2021.08.001.
[6] N. Minh Tuan, T.-T. Vuong, T.-P. Nguyen, and M.-T. Nguyen, “Smooth and Time Optimization Trajectory Planning For Robots Using Polynomial Interpolation”, [Online]. Available: https://www.researchgate.net/publication/384839338
[7] T. Prima Satya, J. Hendry, A. Putra Yudhananta, and Z. F. Bagus Meliawan, “Cheap and Fast Implementation of Linear and Cubic Piecewise Interpolation for Robot Path Smoothing on Arduino Uno Board,” JuLIET), vol. 3, no. 2, 2022.
[8] S. Kang and W. Chou, “Kinematic Analysis, Simulation and Manipulating of a 5-DOF Robotic Manipulator for Service Robot,” in 2019 IEEE International Conference on Mechatronics and Automation (ICMA), IEEE, Aug. 2019, pp. 643–649. doi: 10.1109/ICMA.2019.8816413.
[9] R. Ghaedrahmati and C. Gosselin, “Kinematic Analysis of a New 3-DOF Parallel Wrist-Gripper Assembly with a Large Singularity-Free Workspace,” Actuators, vol. 12, no. 11, Nov. 2023, doi: 10.3390/act12110421.
[10] A. H. Dastjerdi, M. M. Sheikhi, and M. T. Masouleh, “A complete analytical solution for the dimensional synthesis of 3-DOF delta parallel robot for a prescribed workspace,” Mech Mach Theory, vol. 153, Nov. 2020, doi: 10.1016/j.mechmachtheory.2020.103991.
[11] S. Pakzad, S. Akhbari, and M. Mahboubkhah, “Kinematic and dynamic analyses of a novel 4-DOF parallel mechanism,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 12, Dec. 2019, doi: 10.1007/s40430-019-2058-3.
[12] G. Li, J. Song, W. Zhang, and Q. Wu, “Trajectory Planning of 6-DOF Manipulator Based on Joint Space,” in 2024 7th International Conference on Advanced Algorithms and Control Engineering, ICAACE 2024, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 1369–1372. doi: 10.1109/ICAACE61206.2024.10548112.
[13] A. Gholami, T. Homayouni, R. Ehsani, and J. Q. Sun, “Inverse kinematic control of a delta robot using neural networks in real-time,” Robotics, vol. 10, no. 4, Dec. 2021, doi: 10.3390/robotics10040115.
[14] H. Afrisal, A. L. Hakim, M. J. Shiddiq, and I. Setiawan, “Position Control and Trajectory Planning of 3-DOF Arm Manipulator for Test Tube Handling,” in 2019 International Biomedical Instrumentation and Technology Conference (IBITeC), IEEE, Oct. 2019, pp. 52–57. doi: 10.1109/IBITeC46597.2019.9091714.
[15] L. Shijie, “Research Progress on Trajectory Planning of Industrial Robots,” Current Journal of Applied Science and Technology, vol. 42, no. 2, pp. 25–36, Feb. 2023, doi: 10.9734/cjast/2023/v42i24052.
Downloads
Published
Versions
- 2025-06-28 (2)
- 2025-06-28 (1)
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Open Access Policy
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself.










