PENERAPAN FUZZY LOGIC DALAM PEMBUATAN PETA ELEMENT AT RISK BENCANA LUAPAN BANJIR SANGAI AIR BENGKULU KOTA BENGKULU

  • Farouki Dinda Rassarandi Program Studi Teknik Geomatika, Politeknik Negeri Batam
  • Bungaran Roy Satria Tambunan Kementerian Agraria dan Tata Ruang/ Badan Pertanahan Nasional Subseksi Penatagunaan Tanah dan Kawasan Tertentu Kantor Pertanahan Kabupaten Lahat
Keywords: fuzzy logic, disaster, flood, map, element at risk

Abstract

Flood is a disaster that can cause loss and damage in various fields, especially infrastructure. One effort to prevent and reduce the impact of flood is by making simulations through spatial modeling in the form map of element at risk. In making map of element at risk, data input in the form of a map downloaded from the Open Street Map containing infrastructures and natural features from disaster simulations made using Fuzzy logic. The application of Fuzzy logic is used to interpret vague statements of the percentage of the building area affected in each classification of flood overflow areas into a logical understanding of the damage classification of "Berat", "Sedang" and "Ringan". Based on the results of the flood disaster simulation, it was found that the number of buildings impacted by the overflowing floods of the Air Bengkulu River was 37 buildings "Rusak Berat", 216 "Rusak Sedang" and 329 "Rusak Ringan", with 2,328 fatalities.

Downloads

Download data is not yet available.

References

[1] Pane, E. S., Ketut, E., “Pengembangan Simulasi Aliran Air Pada Saluran Drainase Kota Menggunakan Pemodelan Network Flow”, Thesis, Jurusan Teknik Elektro ITS, 2010.
[2] Wibowo, N. S., Setyohadi, D. P. S., dan Rakhmad, H., “Penggunaan Metode Fuzzy Dalam Sistem Informasi Geografis Untuk Pemetaan Daerah Rawan Banjir Di Kabupaten Jember”, Seminar Nasional Hasil Penelitian dan Pengabdian Masyarakat 2016, ISBN 978-602-14917-2-0, 2016.
[3] BAPPENAS, “Laporan Perkiraan Kerusakan dan Kerugian Pasca Bencana Banjir Awal Februari 2007 di Wilayah JABODETABEK (Jakarta, Bogor, Depok, Tangerang, dan Bekasi)”, Kementerian Negara Perencanaan Pembangunan Nasional/ BAPPENAS, 2007.
[4] Badan Nasional Penanggulangan Bencana, “Petunjuk Teknis Penyusunan Peta Ancaman dan Risiko Bencana untuk Tingkat Kabupaten/Kota”, Proyek Peningkatan Kapasitas Penanggulangan Bencana bagi BNPB dan BNPD, 2015.
[5] Prahasta, E., “Konsep-Konsep Dasar Sistem Informasi Geografi”, Bandung: Informatika, 2001.
[6] Thywissen, K., “Components of Risk”, SOURCE (Studies of the University: Research, Counsel, Education), Publication Series of UNU Institute for Environment and Human Security (UNU-EHS), Bonn, Germany. 2006.
[7] Kusumadewi,Sri., “Artificial Intelligentce: Teknik dan Aplikasinya”. Yogyakarta: Graha Ilmu, 2000.
Published
2019-10-17