PENINGKATAN PERPINDAHAN PANAS PADA FAN COIL UNIT (FCU) DENGAN NANOPARTI Al2O3

  • Daud S. Anakottapary Jurusan Teknik Mesin, Politeknik Negeri Bali
  • I N Sutarna Jurusan Teknik Mesin, Politeknik Negeri Bali
  • Putu Wijaya Sunu Jurusan Teknik Mesin, Politeknik Negeri Bali
  • I Made Rasta Jurusan Teknik Mesin, Politeknik Negeri Bali

Abstract

Experimental studies on Fan Coil Unit (FCU) were conducted to investigate heat transfer characteristics due to the addition of Al2O3 nanoparticles. The aims of this study was to reveal the phenomenon of nanofluid particle influences on heat transfer performance indicators. This investigation used tube and fin FCU type with cold fluid is water-Al2O3 nanofluid and hot fluid is ambient air. The cold fluid volume flow rate is 15 lpm and the hot fluid mass flow rate is 0.48 kg/s. The concentration of nanoparticles was 0.1%. The ambient air temperature inlet of FCU is 28 ± 0,50C while the cold fluid temperature entering the FCU is 19 ± 0,50C. In this study the performance parameters on cold fluid with nanoparticles were compared with no nanoparticles. The results showed that the small addition of nanoparticles in cold fluid increased heat transfer in FCU by 9.2%.

References

[1] Anakottapary, D.S., Wibolo, A., Sunu, P.W., Rajendra I M. (2017). Approach temperature of heating process in double tube heat exchanger with Al2O3-water nanofluid. Advanced Science Letters, 23, 12094–12097.
[2] Anandakumar, J. (2015). To conduct the performance test on chiller unit by using nanofluid cooled condenser. International Journal of Mechanical and Robotics Research, 4 (1).
[3] Eastman, J., Choi, S., Li, S., Yu, W., Thompson, L. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718-720.
[4] Hamid, K.A., Azmi, W.H., Mamat, R., Usri, N.A., Najafi, G. (2015). Effect of titanium axide nanofluid concentration on pressure drop. ARPN Journal of Engineering and Applied Sciences, 10 (17), 7815-7820.
[5[ Jeyakumar, M., Osama, A., Sumanth, S., Hamed, M. (2011). Heat transfer coefficient and viscosity of alumina-water Nanofluids. 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics.
[6] Kumbhara A., Gulhaneb N., Pandure S. (2017). Effect of various parameters on working condition of chiller. Energy procedia, 109, 479 – 486
[7] Liu, M. S., Lin, M.C.C., Wang, C. C. (2011). Enhancement of thermal conductivities with Cu, CuO and carbon nanotube nanofluid and aplication of MWNT/water nanofluid on water chiller system. Nanoscale Research Letters, 6, 297.
[8] Masuda, H., Ebata, A., Teramae, K. and Hishinuma, N. (1993). Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles). Netsu Bus-sei (Japan), Vol.7, No. 4, 227-233.
[9] Pak, B.C. and Cho, I.Y. (1998). Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic oxide particles. Experimental Heat Transfer, Vol.11, 151-170.
[10] Purwanto, W.W., Nugroho, Y.S., Dalimi, R., Soepardjo, A.H., Wahid, A., Supramono, D, Herminna, D., Adilina , T.A. (2006). Indonesia Energy Outlook and Statistics. Pengkajian Energi Universitas Indonesia, Jakarta.
[11] Rasta, I M.&Sunu, P. W. (2017). Pengaruh superheat terhadap performansi sistem air conditioning jenis water chiller. Proceeding SNITT- Politeknik Negeri Balikpapan, 288-291.
[12] Sidi, E. B., Palm, S.J., Nguyen, C. T., Roy, G., Galanis, N. (2005). Heat transfer enhancement by using nanofluids in forced convection flows. International Journal of Heat and Fluid Flow 26, 530–546.
[13] Sunu P.W. (2015a) The characteristics of increased pressure drop in pipes with grooves. Adv. Studies Theor. Phys., Vol. 9, no. 2, 57–61.
[14] Sunu P.W., Anakottapary D.S., Santika W.G. (2016a). Temperature approach optimization in the double pipe heat exchanger with groove. Matec web of conference, 58, 04006. doi:10.1051/matecconf/20165804006
[15] Sunu, P. W., Rasta, I M., Anakottapary, D. S., Suarta, I M., Santosa, I D. M. C. (2017b). Capillary tube and thermostatic expansion valve comparative analysis in water chiller air conditioning. IOP Conf. Series: Journal of Physics: Conf. Series, 953, 012063.
[16] Sunu, P. W., Rasta, I M., Anakottapary, D.S. (2017c). Pengaruh panjang pipa kapiler terhadap performance AC jenis water chiller. Proceeding SNITT- Politeknik Negeri Balikpapan, 248-250.
[17] Sunu, P. W., Wardana, I N. G., Sonief A.A, Hamidi, N. (2014). Flow behavior and friction factor in internally grooved pipe wall. Adv. Studies Theor. Phys., Vol. 8, no. 14, 643-647.
[18] Sunu, P. W., Wardana, I N. G., Sonief A.A, Hamidi, N. (2015b). The effect of wall groove numbers on pressure drop in pipe flows. Int. J. Fluid Mech. Resch., 42(2), 119 – 130.
[19] Sunu, P. W., Wardana, I N. G., Sonief A.A, Hamidi, N. (2016b). Optimal grooves number for reducing pressure drop. Contemporary Engineering Sciences, Vol. 9, 2016, no. 22, 1067- 1074.
[20] Sunu, P.W., Anakottapary, D.S., Mulawarman, A. A. N. B., Santosa I D. M. C., Negara, I P. S. (2017a). Heat transfer characteristics of Fan Coil Unit (FCU) under the effect of chilled water volume flowrate. IOP Conf. Series: Journal of Physics: Conf. Series, 953 012058.
Published
2019-03-18