PENINGKATAN PERPINDAHAN PANAS PADA FAN COIL UNIT (FCU) DENGAN NANOPARTI Al2O3
DOI:
https://doi.org/10.30871/ji.v11i2.1170Kata Kunci:
fan coil unit (FCU), nanopartikel, Al2O3, perpindahan panas, nanofluidAbstrak
Eksperimental studi pada Fan Coil Unit (FCU) dilakukan untuk menginvestigasi karakteristik perpindahan panas akibat penambahan nanopartikel Al2O3. Tujuan penelitian ini adalah untuk mengungkap fenomena pengaruh nanofluid partikel pada indikator kinerja perpindahan panas. Pada penelitian ini digunakan FCU jenis tube and fin dengan fluida dingin adalah nanofluid Al2O3 dan fluida panas adalah udara. Laju aliran volume fluida dingin 15 lpm dan laju aliran massa fluida panas sebesar 0,48 kg/s. Konsentrasi nanopartikel yang digunakan pada penelitian ini adalah 0,1%. Temperatur udara lingkungan masuk FCU adalah 28±0,50C sedangkan temperatur fluida dingin yang memasuki FCU adalah 19±0,50C. Pada penelitian ini parameter kinerja pada fluida dingin dengan nanopartikel dibandingkan dengan tanpa nanopartikel. Hasil penelitian menunjukan pemakaian nanopartikel pada fluida dingin mampu meningkatkan perpindahan panas pada FCU sebesar 9,2%.
Unduhan
Referensi
[2] Anandakumar, J. (2015). To conduct the performance test on chiller unit by using nanofluid cooled condenser. International Journal of Mechanical and Robotics Research, 4 (1).
[3] Eastman, J., Choi, S., Li, S., Yu, W., Thompson, L. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718-720.
[4] Hamid, K.A., Azmi, W.H., Mamat, R., Usri, N.A., Najafi, G. (2015). Effect of titanium axide nanofluid concentration on pressure drop. ARPN Journal of Engineering and Applied Sciences, 10 (17), 7815-7820.
[5[ Jeyakumar, M., Osama, A., Sumanth, S., Hamed, M. (2011). Heat transfer coefficient and viscosity of alumina-water Nanofluids. 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics.
[6] Kumbhara A., Gulhaneb N., Pandure S. (2017). Effect of various parameters on working condition of chiller. Energy procedia, 109, 479 "“ 486
[7] Liu, M. S., Lin, M.C.C., Wang, C. C. (2011). Enhancement of thermal conductivities with Cu, CuO and carbon nanotube nanofluid and aplication of MWNT/water nanofluid on water chiller system. Nanoscale Research Letters, 6, 297.
[8] Masuda, H., Ebata, A., Teramae, K. and Hishinuma, N. (1993). Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles). Netsu Bus-sei (Japan), Vol.7, No. 4, 227-233.
[9] Pak, B.C. and Cho, I.Y. (1998). Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic oxide particles. Experimental Heat Transfer, Vol.11, 151-170.
[10] Purwanto, W.W., Nugroho, Y.S., Dalimi, R., Soepardjo, A.H., Wahid, A., Supramono, D, Herminna, D., Adilina , T.A. (2006). Indonesia Energy Outlook and Statistics. Pengkajian Energi Universitas Indonesia, Jakarta.
[11] Rasta, I M.&Sunu, P. W. (2017). Pengaruh superheat terhadap performansi sistem air conditioning jenis water chiller. Proceeding SNITT- Politeknik Negeri Balikpapan, 288-291.
[12] Sidi, E. B., Palm, S.J., Nguyen, C. T., Roy, G., Galanis, N. (2005). Heat transfer enhancement by using nanofluids in forced convection flows. International Journal of Heat and Fluid Flow 26, 530"“546.
[13] Sunu P.W. (2015a) The characteristics of increased pressure drop in pipes with grooves. Adv. Studies Theor. Phys., Vol. 9, no. 2, 57"“61.
[14] Sunu P.W., Anakottapary D.S., Santika W.G. (2016a). Temperature approach optimization in the double pipe heat exchanger with groove. Matec web of conference, 58, 04006. doi:10.1051/matecconf/20165804006
[15] Sunu, P. W., Rasta, I M., Anakottapary, D. S., Suarta, I M., Santosa, I D. M. C. (2017b). Capillary tube and thermostatic expansion valve comparative analysis in water chiller air conditioning. IOP Conf. Series: Journal of Physics: Conf. Series, 953, 012063.
[16] Sunu, P. W., Rasta, I M., Anakottapary, D.S. (2017c). Pengaruh panjang pipa kapiler terhadap performance AC jenis water chiller. Proceeding SNITT- Politeknik Negeri Balikpapan, 248-250.
[17] Sunu, P. W., Wardana, I N. G., Sonief A.A, Hamidi, N. (2014). Flow behavior and friction factor in internally grooved pipe wall. Adv. Studies Theor. Phys., Vol. 8, no. 14, 643-647.
[18] Sunu, P. W., Wardana, I N. G., Sonief A.A, Hamidi, N. (2015b). The effect of wall groove numbers on pressure drop in pipe flows. Int. J. Fluid Mech. Resch., 42(2), 119 "“ 130.
[19] Sunu, P. W., Wardana, I N. G., Sonief A.A, Hamidi, N. (2016b). Optimal grooves number for reducing pressure drop. Contemporary Engineering Sciences, Vol. 9, 2016, no. 22, 1067- 1074.
[20] Sunu, P.W., Anakottapary, D.S., Mulawarman, A. A. N. B., Santosa I D. M. C., Negara, I P. S. (2017a). Heat transfer characteristics of Fan Coil Unit (FCU) under the effect of chilled water volume flowrate. IOP Conf. Series: Journal of Physics: Conf. Series, 953 012058.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2019 JURNAL INTEGRASI

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





