ANALISIS PROSES PENGELASAN REPLATING LAMBUNG KAPAL PADA KONDISI FLOATING TERHADAP NILAI KEKERASANNYA
-
DOI:
https://doi.org/10.30871/jatra.v7i2.10850Keywords:
Floating, Hardness, Replating, Cooling RateAbstract
Replating the ship’s hull is an essential repair process to ensure that a vessel remains operationally seaworthy. Replating welding can be performed under both docking and floating conditions. These differing conditions influence the cooling rate, which in turn can result in variations in hardness (HV). This study examines the effect of varying the distance from the waterline (30, 60, 100, and 130 mm) and water temperature (25°C, 28°C, 30°C, and 32°C) on the hardness values produced during welding under floating conditions.
Each variation combination was tested using the Vickers method with three repetitions, and the reported HV values represent the average of those measurements. The results show that the highest hardness value under floating conditions reached 218.5 HV (30 mm, 25°C), while the lowest was 195.7 HV (130 mm, 32°C). All measured hardness values remained within the acceptable limits specified by BKI for low-carbon steel.
This study demonstrates that the closer the weld groove is to the water surface and the lower the water temperature, the higher the resulting hardness due to increased cooling rates. The limitations of this study include the absence of microstructural data and the unavailability of individual measurement data for further statistical analysis.
Downloads
References
[1] N. R. Mandal, Ship Construction and Welding, vol. 2. in Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping, vol. 2. Singapore: Springer Singapore, 2017. doi: 10.1007/978-981-10-2955-4.
[2] A. Djumiati, A. Zubaydi, W. H. Akbar Putra, and A. Ismail, “The effect of ship replating welding process on floating conditions against strength value,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p. 012098, Feb. 2021, doi: 10.1088/1757-899X/1034/1/012098.
[3] X. Di, S. Ji, F. Cheng, D. Wang, and J. Cao, “Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding,” Mater. Des., vol. 88, pp. 505–513, Dec. 2015, doi: 10.1016/j.matdes.2015.09.025.
[4] M.-X. Sun, W.-N. Zhang, Z.-Y. Liu, and G.-D. Wang, “Effect of cooling mode on microstructure and mechanical properties in an extremely low carbon Cu bearing steel,” Mater. Charact., vol. 120, pp. 38–44, Oct. 2016, doi: 10.1016/j.matchar.2016.08.018.
[5] B. Sukresno, D. Jatisworo, and R. Hanintyo, “Validation of Sea Surface Temperature from GCOM-C Satellite Using iQuam Datasets and MUR-SST in Indonesian Waters,” Indones. J. Geogr., vol. 53, no. 1, Apr. 2021, doi: 10.22146/ijg.53790.
[6] K. Sinnes, Ed., Welding handbook. Volume 1, Welding and cutting science and technology, Tenth edition. Miami, FL: American Welding Society, 2018.
[7] “ISO-6507-1-2023.”
[8] “ASTM E 384.”
[9] D. F. R. Bethony, “METALURGI FISIK (PHYSICAL METALLURGY),” Phys. Metall..
[10] “( Vol VI ),2019 Rules for Welding,2019.”
[11] G. Turichin, M. Kuznetsov, A. Pozdnyakov, S. Gook, A. Gumenyuk, and M. Rethmeier, “Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel,” Procedia CIRP, vol. 74, pp. 748–751, 2018, doi: 10.1016/j.procir.2018.08.018.
[12] B. P. Nagasai, S. Malarvizhi, and V. Balasubramanian, “Effect of welding processes on mechanical and metallurgical characteristics of carbon steel cylindrical components made by wire arc additive manufacturing (WAAM) technique,” CIRP J. Manuf. Sci. Technol., vol. 36, pp. 100–116, Jan. 2022, doi: 10.1016/j.cirpj.2021.11.005.
[13] D. Butler, A guide to ship repair estimates in man hours, 2nd edition. in Marine engineering. Amsterdam [Netherlands]: Elsevier, Butterworth-Heinemann, 2012.
[14] “ASME 2017 SEC II Part A.”
[15] “ASTM A370 - 19.”
[16] “AWS D1.1-D1.1M-2015.”
[17] M. P. Garcia, A. Gervasyev, C. Lu, and F. J. Barbaro, “Chemical composition and weld cooling time effects on heat-affected zone hardness of line pipe steels,” Int. J. Press. Vessels Pip., vol. 200, p. 104837, Dec. 2022, doi: 10.1016/j.ijpvp.2022.104837.
[18] C.-G. Jeong, T. T. T. Trang, Y. Woo, E. Y. Yoon, Y. Lee, and Y.-U. Heo, “Effect of cooling rate on the final microstructure and tensile property in an Fe–Mn–Si–C-based multiphase TRIP steel,” Mater. Sci. Eng. A, vol. 887, p. 145696, Nov. 2023, doi: 10.1016/j.msea.2023.145696.
[19] T. Han, C.-H. Kuo, N. Sridharan, L. M. Headings, S. S. Babu, and M. J. Dapino, “Effect of weld power and interfacial temperature on mechanical strength and microstructure of carbon steel 4130 fabricated by ultrasonic additive manufacturing,” Manuf. Lett., vol. 25, pp. 64–69, Aug. 2020, doi: 10.1016/j.mfglet.2020.07.006.
[20] D. Pathak, R. P. Singh, S. Gaur, and V. Balu, “Experimental investigation of effects of welding current and electrode angle on tensile strength of shielded metal arc welded low carbon steel plates,” Mater. Today Proc., vol. 26, pp. 929–931, 2020, doi: 10.1016/j.matpr.2020.01.146.
[21] J. Zhang, K. Cui, B. Huang, X. Mao, and M. Zheng, “Influence of heat input on the microstructure and mechanical properties of CLAM steel multilayer butt-welded joints,” Fusion Eng. Des., vol. 152, p. 111413, Mar. 2020, doi: 10.1016/j.fusengdes.2019.111413.
[22] L. D. J. Jorge et al., “Mechanical properties and microstructure of SMAW welded and thermically treated HSLA-80 steel,” J. Mater. Res. Technol., vol. 7, no. 4, pp. 598–605, Oct. 2018, doi: 10.1016/j.jmrt.2018.08.007.
[23] A. Rezaeian, M. Keshavarz, and E. Hajjari, “Mechanical properties of steel welds at elevated temperatures,” J. Constr. Steel Res., vol. 167, p. 105853, Apr. 2020, doi: 10.1016/j.jcsr.2019.105853.
[24] P. D. Gosavi, K. K. Sarkar, S. K. Khunte, V. R. Pawar, and B. Basu, “Microstructure and mechanical properties correlation of weld joints of a high strength naval grade steel,” Procedia Struct. Integr., vol. 14, pp. 304–313, 2019, doi: 10.1016/j.prostr.2019.05.038.
[25] C. Borchers et al., “Microstructure and mechanical properties of medium-carbon steel bonded on low-carbon steel by explosive welding,” Mater. Des., vol. 89, pp. 369–376, Jan. 2016, doi: 10.1016/j.matdes.2015.09.164.
[26] Y. Hu, Y. Shi, K. Sun, and X. Shen, “Microstructure evolution and mechanical performance of underwater local dry welded DSS metals at various simulated water depths,” J. Mater. Process. Technol., vol. 264, pp. 366–376, Feb. 2019, doi: 10.1016/j.jmatprotec.2018.09.023.
[27] N. Subeki, A. I. Fanani, and D. Kurniawati, “PENGARUH PENAMBAHAN STATIC COOLING DENGAN VARIASI KAPASITAS AIR TERHADAP DISTORSI DAN SIFAT MEKANIK PADA PENGELASAN FCAW,” 2018.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



11.jpg)







