Tidal Phenomena and GPS-Based Monitoring System for Sea Level Measurement

Authors

  • Basyaruddin Ismail Harahap Raja Ali Haji Maritime University, Faculty of Engineering and Maritime Technology, Department of Electrical Engineering, Jl.Politeknik Senggarang KM 24, Tanjungpinang, Indonesia.
  • Hollanda Arief Kusuma Raja Ali Haji Maritime University, Faculty of Engineering and Maritime Technology, Department of Electrical Engineering, Jl.Politeknik Senggarang KM 24, Tanjungpinang, Indonesia. https://orcid.org/0000-0003-4720-1072
  • Indri Hapsari Raharja Gultom Raja Ali Haji Maritime University, Faculty of Engineering and Maritime Technology, Department of Electrical Engineering, Jl.Politeknik Senggarang KM 24, Tanjungpinang, Indonesia.

DOI:

https://doi.org/10.30871/jagi.v9i1.9234

Keywords:

Sea surface height, GPS U-Blox NEO-8M, buoy, Fourier analysis, tides.

Abstract

Measuring sea surface height in open waters is very important for understanding tidal patterns and ocean wave dynamics. Most of the instruments currently used are based on pressure or acoustic sensors and are generally placed on the coast, making them less effective for measurements in open waters. This research develops a sea surface height measurement system based on the U-Blox NEO-8M GPS, which is placed on a buoy to obtain real-time elevation data. This system consists of an Arduino Mega 2560, a GPS U-Blox NEO-8M, and a Micro SD storage module. The measurement data were analyzed using the Fourier method to identify the main components constituting the sea surface height. The test results show a Mean Tide Level (MTL) of 4.27 m, a High-Water Level (HWL) of 11.30 m, and a Low Water Level (LWL) of -6.90 m. Fourier analysis revealed eight main components that make up the sea surface height pattern, with the dominant component having a wave period of 4.29 hours and an amplitude of 6 m. The comparison between the measured data and the Fourier model resulted in an average difference of 1.0798 m, likely caused by the influence of satellite signals, multipath, and atmospheric conditions. The results of this study indicate that the GPS NEO-8M can be used as an alternative for monitoring sea surface height in open waters, although it still requires accuracy improvement through signal correction techniques and more precise geoid references.

Downloads

Download data is not yet available.

Author Biographies

Basyaruddin Ismail Harahap, Raja Ali Haji Maritime University, Faculty of Engineering and Maritime Technology, Department of Electrical Engineering, Jl.Politeknik Senggarang KM 24, Tanjungpinang, Indonesia.

Raja Ali Haji Maritime University, Faculty of Engineering and Maritime Technology, Department of Electrical Engineering.

Hollanda Arief Kusuma, Raja Ali Haji Maritime University, Faculty of Engineering and Maritime Technology, Department of Electrical Engineering, Jl.Politeknik Senggarang KM 24, Tanjungpinang, Indonesia.

Raja Ali Haji Maritime University, Faculty of Engineering and Maritime Technology, Department of Electrical Engineering

Indri Hapsari Raharja Gultom, Raja Ali Haji Maritime University, Faculty of Engineering and Maritime Technology, Department of Electrical Engineering, Jl.Politeknik Senggarang KM 24, Tanjungpinang, Indonesia.

Raja Ali Haji Maritime University, Faculty of Engineering and Maritime Technology, Department of Electrical Engineering

References

Erol, S. (2011). Time-Frequency Analyses of Tide-Gauge Sensor Data. Sensors, 11(4), 3939–3961. https://doi.org/10.3390/s110403939

Fitriana, D., Oktaviani, N., & Khasanah, I. U. (2019). Analisa Harmonik Pasang Surut Dengan Metode Admiralty Pada Stasiun Berjarak Kurang Dari 50 Km. Jurnal Meteorologi Klimatologi Dan Geofisika, 6(1), 38–48. https://doi.org/10.36754/jmkg.v6i1.113

Indrayanti, E., Wijayanti, D. P., & Siagian, H. S. R. (2020). Pasang Surut, Arus dan Gelombang Berdasarkan Data Pengukuran Acoustic Doppler Current Profiler di Perairan Pulau Cilik, Karimunjawa. Buletin Oseanografi Marina, 9(1), 37–44. https://doi.org/10.14710/buloma.v9i1.29065

Intergovernmental Oceanographic Commission (IOC). (2014). Manual on sea level measurement and interpretation. (Volume II:).

Julianto, R., Nadzir, Z. A., & Prijatna, K. (2021). Analisis Harmonik Pasang Surut Laut Menggunakan Data Satelit Altimetri Jason-2 dan Data Stasiun Pasut (Studi Kasus: Perairan Pesisir Barat Lampung). Seminar Nasional Geomatika, 679. https://doi.org/10.24895/SNG.2020.0-0.1182

Khairunnisa, K., Apdillah, D., & Putra, R. D. (2021). Karakteristik Pasang Surut di Perairan Pulau Bintan Bagian Timur Menggunakan Metode Admiralty. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 14(1), 58–69. https://doi.org/10.21107/jk.v14i1.9928

Khomsin, Syaputra, K., & Pratomo, D. G. (2019). Aplikasi Global Positioning System (GPS) dan Co-Tidal Untuk Pengamatan Nilai Tinggi Muka Air Laut di Perairan Laut Jawa. Geoid, 14(2), 103. https://doi.org/10.12962/j24423998.v14i2.3959

Knight, P., Bird, C., Sinclair, A., Higham, J., & Plater, A. (2021). Testing an “IoT” Tide Gauge Network for Coastal Monitoring. IoT, 2(1), 17–32. https://doi.org/10.3390/iot2010002

Larson, K. M., Ray, R. D., Nievinski, F. G., & Freymueller, J. T. (2013). The Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay, Alaska. IEEE Geoscience and Remote Sensing Letters, 10(5), 1200–1204. https://doi.org/10.1109/LGRS.2012.2236075

Míguez, B. M., Testut, L., & Wöppelmann, G. (2012). Performance of modern tide gauges: towards mm-level accuracy. Scientia Marina, 76(S1), 221–228. https://doi.org/10.3989/scimar.03618.18A

Nerfita, N. (2018). Prediksi Pasang Surut Air Laut Menggunakan Jaringan Syaraf Tiruan Backpropagation. Promosi Kesehatan Dan Ilmu Perilaku., 7(1), 1–6.

Quraisy, M. I., Zainuddin, Z., & Hasanuddin, Z. (2019). Sistem Monitoring dan Estimasi Pasang Surut Air Laut Pada Kantor Perhubungan Laut Kab. Majene. JURNAL IT, 10(1), 24–30. https://doi.org/10.37639/jti.v10i1.91

Rosida, L. A., Anwar, M. S., Sholeh, O. M., Mushofa, A. S., & Prayogo, L. M. (2022). Penerapan Metode Least Square untuk Analisis Harmonik Pasang Surut Air Laut di Kabupaten Tuban, Jawa Timur. EL-JUGHRAFIYAH, 2(2), 67. https://doi.org/10.24014/jej.v2i2.17160

Safi’i, A. N., Syetiawan, A., Kusuma, H. A., Lumban-Gaol, Y. A., Rudiastuti, A., W., & Oktaviani, N. (2018). Optimalisasi Data Satelit Altimetri untuk Menghitung Konstanta Harmonik Pasang Surut. Seminar Nasional Geomatika 2018, 777–786.

Sagala, H. A., Pasaribu, R. P., & Ulya, F. K. (2021). Pemodelan Pasang Surut dengan Menggunakan Metode Flexible Mesh untuk Mengetahui Genangan Rob di Pesisir Karawang. PELAGICUS, 2(3), 141. https://doi.org/10.15578/plgc.v2i3.10341

Salamah, I., Nasron, N., & Azzahra, D. (2022). Teknologi GPS NEO-6 Untuk Tracking Kapal Penumpang Secara Real Time dengan Fitur Tombol Emergency SOS. SMATIKA JURNAL, 12(02), 146–155. https://doi.org/10.32664/smatika.v12i02.692

Scherer, W., Stoney, W. M., Mero, T. N., O’Hargan, M., Gibson, W. M., Hubbard, J. R., & Tronvig., K. A. (2001). Tidal datums and their applications. In Tidal datums and their applications.

Sinaga, M. J., Cahyadi, M. N., Pratomo, D. G., & Kishimoto, N. (2020). Analisis Tinggi Muka Air Laut Menggunakan Receiver Multi-Frekuensi dan MultiGNSS di Perairan Sulawesi. GEOID, 16(1), 68–79. https://journal.its.ac.id/index.php/geoid/article/view/1669

Solom, J., Kushadiwijayanto, A. A., & Nurrahman, Y. A. (2020). Karakteristik Pasang Surut di Perairan Kuala Mempawah Karakteristik Pasang Surut di Perairan Kuala Mempawah Kalimantan Barat. Jurnal Laut Khatulistiwa, 3(2), 17–22.

Specht, M., Specht, C., Lasota, H., & Cywiński, P. (2019). Assessment of the Steering Precision of a Hydrographic Unmanned Surface Vessel (USV) along Sounding Profiles Using a Low-Cost Multi-Global Navigation Satellite System (GNSS) Receiver Supported Autopilot. Sensors, 19(18), 3939. https://doi.org/10.3390/s19183939

Sudirman Adibrata. (2007). Analisis Pasang Surut di Pulau Karampuang , Provinsi Sulawesi Barat. Sumberdaya Perairan, 1, 1–6.

Suhaemi, Raharjo, S., & Marhan. (2018). Penentuan Tipe Pasang Surut Perairan pada Alur Pelayaran Manokwari dengan Menggunakan Metode Admiralty. Jurnal Sumberdaya Akuatik Indopasifik, 2(1), 57–64.

Ziemer, R. E., Tranter, W. H., & Fannin., D. R. (2014). Signals and Systems: Continuous and Discrete (4th Edition). (4th ed.). Harlow: Pearson Education Limited.

Downloads

Published

2025-06-26