Development And Field Test Of Gps-Gsm Drifting Buoy For Measurement Of Sea Surface Current Data
Abstract
Spatial data of coastal currents are generally obtained from altimetry satellites. However, the data obtained still has shortcomings, such as the low level of resolution and the need for field validation (ground truth). The electronic drifting buoy (GPS-GSM) is an oceanographic data acquisition instrument that uses a cyber-physical system (SSF) and follows the movement of water around the instrument. The application of the SSF system will facilitate data acquisition from the drifting buoy because the data will be directly entered into the database, transmitted through the GSM system, and monitored in real-time. The design of the ESP32 microcontroller-based instrument is supported by a GPS module for location data acquisition and a GSM module for data transmission to the database. The drifting buoy has dimensions of 52 cm high and 30 cm wide, while the current trap section has dimensions of 26 cm high and 15 cm wide for each wing made of iron. The field test was conducted in the Seribu Islands, DKI Jakarta province, with the current velocity ranged from 0.03 m/s to 0.35 m/s and the average current velocity was 0.19 m/s, while the surface temperature ranged from 26.37 to 27.83 °C with an average value of 26.75 °C.
Downloads
References
Assuyuti Y.M., Zikrillah R.B., Tanzil M.A., Banata A, Utami P. 2018. Distribusi dan Jenis Sampah Laut serta Hubungannya terhadap Ekosistem Terumbu Karang Pulau Pramuka, Panggang, Air, dan Kotok Besar di Kepulauan Seribu Jakarta. Majalah Ilmiah Biologi Biosfera. 35(2):91-102. https://doi.org/10.20884/1.mib.2018.35.2.707
Alpers W, Brandt P, Lazar A, Dagorne D, Sow B, Faye S, Hansen M.W., Rubino A, Poulain P, Brehmer P. 2013. A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data. Remote Sensing of Environment 129, 132-143. http://dx.doi.org/10.1016/j.rse.2012.10.032.
Amemou H, Koné V, Aman A., Lett C. 2020. Assessment of a Lagrangian model using trajectories of oceanographic drifters and fishing devices in the Tropical Atlantic Ocean. Progress in Oceanography 188. https://doi.org/10.1016/j.pocean.2020.102426
Andry W. Ratsimandresya, Sebastien Donneta, Pierre Goulet. 2020. Identification of geographic zones of influence associated with surface circulation for Aquaculture Bay Management Area application. Journal of Marine Systems 204 (2020) 103291.
Bao M, Guan W, Yang Y, Cao Z, Chen Q. 2015. Drifting trajectories of green algae in the western Yellow Sea during the spring and summer of 2012. Estuarine, Coastal and Shelf Science 163, 9-16. http://dx.doi.org/10.1016/j.ecss.2015.02.009.
Celentano, P., Falco, P., Zambianchi, E. 2020. Surface connection between the Ionian Sea and different areas of the Mediterranean derived from drifter data, Deep-Sea Research Part I (2020), doi: https://doi.org/10.1016/j.dsr.2020.103431.https://doi.org/10.1016/j.jmarsys.2019.103291.
Chang Y, Chu P.C, Tseng R. 2015. Site selection of ocean current power generation from drifter measurements. Renewable Energy 80, 737-745. http://dx.doi.org/10.1016/j.renene.2015.03.003
Charria G, Lazure P, Le-Cann B, Serpette A, Reverdin G, Louazel S, Batifoulier F, Dumas F, Pichon A, Morel Y. 2013. Surface layer circulation derived from Lagrangian drifters in the Bay of Biscay. Journal of Marine Systems 109-110, S60-S76. http://dx.doi.org/10.1016/j.jmarsys.2011.09.015
Erick van Sebille. 2014. Adrift.org.au — A free, quick and easy tool to quantitatively study planktonic surface drift in the global ocean. Journal of Experimental Marine Biology and Ecology, 461, 317-322. http://dx.doi.org/10.1016/j.jembe.2014.09.002
Garcia-Pineda O, Androulidakis Y, Hénaff M, Kourafalou N, Holee LR, Kang H, Staples G, Ramirez E, DiPinto L. 2019. Measuring oil residence time with GPS-drifters, satellites, and Unmanned Aerial Systems (UAS). Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2019.110644.
Imzilen, T., Chassot, E., Barde, J., Demarcq, H., Maufroy, A., Roa-Pascuali, L., Ternon, J-F., Lett, C., 2018. Fish aggregating devices drift like oceanographic drifters in the near-surface currents of the Atlantic and Indian Oceans, Progress in Oceanography. https://doi.org/10.1016/j.pocean.2018.11.007.
Iqbal M. 2011. Rancang Bagun dan Uji Kinerja Drifter Buoy [Tesis]. Bogor (ID): Institut Pertanian Bogor.
Lee, J.; Kim, D.H.; Lee, S., and Lee, J.L., 2016. Lagrangian Observation of Rip Currents at Haeundae Beach Using an Optimal Buoy Type GPS Drifter. In: Vila-Concejo, A.; Bruce, E.; Kennedy, D.M., and McCarroll, R.J. (eds.), Proceedings of the 14th International Coastal Symposium (Sydney, Australia). Journal of Coastal Research, Special Issue, No. 75, pp. 1177 - 1181. Coconut Creek (Florida), ISSN 0749-0208
Lutjeharms J.R.E dan Heydorn A.E.F. 1981. The rock-lobster Jasus tristani on Vema Seamount: Drifting buoys suggest a possible recruiting mechanism. Deep-Sea Research, Vol. 28A, No. 6, pp. 631 to 636, 1981.
Maximenko N, Hafner J, Niiler P. 2012. Pathways of marine debris derived from trajectories of Lagrangian drifters. Marine Pollution Bulletin 65, 51-62. http://dx.doi.org/10.1016/j.marpolbul.2011.04.016.
Mustikasari E, Rustam, A. 2016. Karakteristik Fisis Air Laut dan Dinamika Perairan Kepulauan Seribu. Jurnal Riset Jakarta. 12(2). https://doi.org/10.37439/jurnaldrd.v12i2.5
Ribotti A., De Falco G., Arrichiello V. 2002. Experimentation of an innovative Lagrangian coastal drifter. In Operational Oceanography." Implementation at the European and Regional Scales edited by N.C. Flemming, S. Vallerga, N. Pinardi, H.W.A. Behrens, G. Manzella, D. Prandle, J.H. Stel. Elsevier Science B.V.
Rositasari, R., Puspitasari, R., Nurhati, I.S., Purbonegoro, T. and Yogaswara, D. 2017. dekade LIPI di Teluk Jakarta: Review penelitian oseanografi di Teluk Jakarta 1970-2015. Pusat Penelitian Oseanografi Lembaga Ilmu Pengetahuan Indonesia, Jakarta, ix.
Rosyid A, Luthfi, O.M. 2018. Pengamatan Laju Penyakit White Syndrome Pada Montipora sp. Article in Journal of Marine and Aquatic Sciences. https://doi.org/10.24843/jmas.2019.v5.i01.2228
Sachoemar S.I. 2008. Karakteristik Lingkungan dan Perairan Kepelauan Seribu. Jurnal Air Indonesia. 4(2):109-114
Soeboer D. 2007. Pengembangan Instrumen GPS Buoy untuk Melacak Pergerakan Arus Permukaan. Thesis Program Studi Teknologi Kelautan, Fakultas Pascasarjana, Institut Pertanian Bogor
Srinivasan R, Zacharia S, Sudhakar T, Atmanand MA. 2017. Indigenous drifting buoys for the Indian Ocean observations. Ocean Engineering 145, 263-267. http://dx.doi.org/10.1016/j.oceaneng.2017.08.054.
Subbaraya, S., Breitenmoser, A., Molchanov, A., Muller, J., Oberg, C., Caron, D. A., & Sukhatme, G. S. 2016. Circling the Seas: Design of Lagrangian Drifters for Ocean Monitoring. IEEE Robotics and Automation Magazine, 23(4), 42–53. https://doi.org/10.1109/MRA.2016.2535154
Yurovsky Y.Y, Dulov V.A. 2020. MEMS-based wave buoy: Towards short wind-wave sensing. Ocean Engineering 217. https://doi.org/10.1016/j.oceaneng.2020.108043
Copyright (c) 2022 Journal of Applied Geospatial Information
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JAGI are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.