Tides Measurement and Tidal Analysis at Jakarta Bay

  • Hollanda Arief Kusuma Department of Electrical Engineering - Universitas Maritim Raja Ali Haji https://orcid.org/0000-0003-4720-1072
  • Muhammad Zainuddin Lubis Geomatics Engineering, Politeknik Negeri Batam, Batam 29461, Indonesia
  • Nadya Oktaviani Research Division, Badan Informasi Geospasial, Jl. Raya Jakarta Bogor Km. 46 Cibinong, Kabupaten Bogor, Indonesia
  • Dwi Eny Djoko Setyono Research Unit for Natural Product Technology - LIPI, Jln. Yogya - Wonosari km 31,5 Gading, Playen, Gunungkidul, DIY, Indonesia
Keywords: Tides, Formzahl Number, Harmonic Analysis, Fourier Analysis

Abstract

Tides observation conducted for these purposes such as real-time depth of water, determination mean sea level and other tidal datums to establish a system of tidal benchmarks and data for production of tide and tidal current predictions. Center for Marine and Coastal Mapping – Geospatial Information System used water level and tides data mainly to correct the water depth measurement to chart datum. This study uses sea level observation data conducted from 20th February 2018 until 4th April 2018 at Marina Batavia, Jakarta. This study found that tidal types at this location is mixed diurnal using formzahl number. Astronomical and shallow water possible constituent were derived from the harmonic analysis. Fourier analysis gives clearly visual interpretation in frequency perspective. Several constituents inseparable because of short duration records.

Downloads

Download data is not yet available.

References

Abidin, H.Z., Hadi, S., Andreas, H., Gumilar, I., Nurmaulia, S.L., Fukuda, Y., 2012. Coastal Flooding of Jakarta ( Indonesia ): Causes and Impacts. p. 393.

Boon, J.D., 2011. Secrets of the Tide: Tide and Tidal Current Analysis and Applications, Storm Surges and Sea Level Trends, Secrets of the Tide: Tide and Tidal Current Analysis and Applications, Storm Surges and Sea Level Trends. Woodhead Publishing Limited, Cambridge.

Can, E., 2013. Piecewise Cubic Approximation for Data. Am. J. Appl. Math. 1, 24. https://doi.org/10.11648/j.ajam.20130102.11

Chai, T., Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

Christon, Djunaedi, O.S., Purba, N.P., 2012. Pengaruh tinggi pasang surut terhadap pertumbuhan dan biomassa daun lamun Enhalus acoroides di Pulau Pari Kepulauan Seribu Jakarta. J. Perikan. dan Kelaut. 3, 287–294.

Emery, K.O., Aubrey, D.G., 1991. Sea Levels, Land Levels, and Tide Gauges. https://doi.org/10.1007/978-1-4613-9101-2

Flinchem, E.P., Jay, D.A., 2000. An introduction to wavelet transform tidal analysis methods. Estuar. Coast. Shelf Sci. 51, 177–200. https://doi.org/10.1006/ecss.2000.0586

Fu, L.-L., Cazenave, A. (Eds.), 2001. Satellite Altimetry and Earth Sciences, Volume 69, 1st ed. Academic Press, San Diego.

Gilat, A., Subramaniam, V., 2013. Numerical Methods for Engineers and Scientists, 3rd Edition. John Wiley & Sons, Inc.

Haryono, Narni, S., 2004. Karakteristik Pasang Surut di Pulau Jawa. J. Forum Tek. 28, 1–5.

Holinde, L., Badewien, T.H., Freund, J.A., Stanev, E. V., Zielinski, O., 2015. Processing of water level derived from water pressure data at the Time Series Station Spiekeroog. Earth Syst. Sci. Data 7, 289–297. https://doi.org/10.5194/essd-7-289-2015

Indriani, Kurniawati, N., Hendri, M., 2010. Simulasi Pemodelan Arus Pasang Surut di Luar Kolam Pelabuhan Tanjung Priok Menggunakan Perangkat Lunak. Maspari J. 01, 79–83.

Intergovernmental Oceanographic Commission, 2006. Manual on Sea Level Measurement and Interpretation, Volume IV: An Update to 2006, IOC Manuals and Guides No.14, Vol. IV ; JCOMM Technical Report No. 31. Paris.

Manzano-Agugliaro, F., Corchete, V., Lastra, X.B., 2011. Spectral analysis of tide waves in the Strait of Gibraltar. Sci. Res. Essays 6, 453–462.

NOAA, 2001. Tidal Datums and Their Applications. Special Publication No. CO-OPS 1. Silver Spring, Maryland.

Pawlowicz, R., Beardsley, B., Lentz, S., 2002. Classical tidal harmonic analysis including error estimates in MATLAB using TDE. Comput. Geosci. 28, 929–937. https://doi.org/10.1016/S0098-3004(02)00013-4

Safi’I, A.N., Rudiastuti, A.W., 2019. Tidal Correlation using Altimetry Satellite. IOP Conf. Ser. Earth Environ. Sci. 284. https://doi.org/10.1088/1755-1315/284/1/012036

Stewart, R.H., 2008. Introduction To Physical Oceanography.

Takagi, H., Esteban, M., Mikami, T., Fujii, D., 2016. Projection of coastal floods in 2050 Jakarta. Urban Clim. 17, 135–145. https://doi.org/10.1016/j.uclim.2016.05.003

Talke, S.A., Kemp, A.C., Woodruff, J., 2018. Relative Sea Level , Tides , and Extreme Water Levels in Boston Harbor From 1825 to 2018. J. Geophys. Res. Ocean. 123, 1–20. https://doi.org/10.1029/2017JC013645

Thomson, R.E., Emery, W.J., 2014. Data Analysis Methods in Physical Oceanography (Third Edition), Third Edit. ed. Elsevier, Boston. https://doi.org/https://doi.org/10.1016/B978-0-12-387782-6.01001-2

Trageser, J.I., 1995. A new family of real-time wave and tide instruments, in: OCEANS ’95. MTS/IEEE. Challenges of Our Changing Global Environment. Conference Proceedings. pp. 1760–1768. https://doi.org/10.1109/OCEANS.1995.528850

Valeport Limited, 2009. TideMaster Operating Manual.

Wyrtki, K., 1961. Physical Oceanography of the Southeast Asian Waters, Naga Report 2. La Jolla.

Yang, L., Huiyan, Z., 1996. Shape preserving piecewise cubic interpolation. Appl. Math. 11, 419–424. https://doi.org/10.1007/bf02662881

Published
2021-09-06