Development of Kd(490) Algorithm Using Medium Spatial Resolution Landsat 8 OLI Arround Shallow Waters In Panggang Island

  • Budhi Agung Prasetyo Marine Environmental Science Study Program, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Kabupaten Lampung Selatan, Lampung 35365 Indonesia
  • Wikanti Asriningrum Remote Sensing Applications Center, National Institute of Aeronautics and Space of Indonesia (LAPAN), Jl. Kalisari No.8, RT.11/RW.1, Pekayon, Pasar Rebo, East Jakarta City, Jakarta 13710 Indonesia
  • Vincentius Paulus Siregar Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University, Jl. Agatis, Babakan, Kec. Dramaga, Kota Bogor, Jawa Barat 16128 Indonesia
Keywords: Diffuse Attenuation Coefficient, Kd(490), Landsat 8, Ocean Color, Algorithm

Abstract

The state of water quality around Panggang Island, Seribu Islands, in recent decades experienced degradation caused by human activities. The parameters of the diffuse attenuation coefficient (Kd) is an important optical property-related attenuation of light in the water column, and its brightness. Landsat 8 data has potential to map the value of Kd(490) in regional waters in Indonesia. Landsat 8 data could provide solutions to spatial data availability of Kd(490) values in addition to Ocean Color data. The purposes of this research was to developed empirical algorithm of Landsat 8 data to derive values of Kd(490) that can be use as tools for monitoring water quality optically on a regional scale which could not be done by Ocean Color data that has spatial resolution limitation. In-situ measurement of radiometric data was done by using TriOS-RAMSES hyperspectral spectroradiometer with a range of 320 – 890 nm and spectral sampling of 3.3 nm on shallow-waters around Panggang Island. The development of Kd(490) algortihm was done by simulation on ratio of Green and Near-infrared band has great determination values with Kd(490) empirically, which that empirical algorithm can be applied on Landsat 8 data to derive its values. In addition, it is noted that the shallow-waters around Panggang Island, dominant affected by absorption of chlorophyll-a rather than scattering by suspended solids.

Downloads

Download data is not yet available.

References

Arief, M., 2017. Development of Dissolved Oxygen Concentration Extraction Model Using Landsat Data Case Study: Ringgung Coastal Waters. Int. J. Remote Sens. Earth Sci. 12, 1. https://doi.org/10.30536/j.ijreses.2015.v12.a2667

Austin, R.W., Petzold, T.J., 1984. Spectral Dependence Of The Diffuse Attenuation Coefficient Of Light In Ocean Waters. Ocean Opt. VII 0489, 168. https://doi.org/10.1117/12.943302

Austin, R.W., Petzold, T.J., 1981. The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner. Oceanogr. from Sp. 239–256. https://doi.org/10.1017/CBO9781107415324.004

Brown, C.A., Huot, Y., Werdell, P.J., Gentili, B., Claustre, H., 2008. The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development. Remote Sens. Environ. 112, 4186–4203. https://doi.org/10.1016/j.rse.2008.06.008

Budhiman, S., Suhyb Salama, M., Vekerdy, Z., Verhoef, W., 2012. Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion. ISPRS J. Photogramm. Remote Sens. 68, 157–169. https://doi.org/10.1016/j.isprsjprs.2012.01.008

Budhiman, S., Winarso, G., Asriningrum, W., 2013. Pengaruh Pengambilan Training Sample Substrat Dasar Berbeda pada Koreksi Kolom Air Menggunakan Data Penginderaan Jauh. Penginderaan Jauh 10, 83–92.

Green, E.P., Clark, C.D., Edwards, A.J., 2000. Image classification and habitat mapping. Remote Sens. Handb. Trop. Coast. Manag. 141–154.

Hendiarti, S.N., M.C.G, F., Andrastuti, A., Silaiman, A., 2006. Riset dan Teknologi Pemantauan Dinamika Laut Indonesia. Satelit Oseanografi 69.

IOCCG, 2006. IOCCG Report Number 05: Reports of the International Ocean-Colour Coordinating Group Remote Sensing of Inherent Optical Properties : Fundamentals, Tests of Algorithms, and Applications, IOCCG Report 5. https://doi.org/10.1006/jmbi.1998.2073

IOCCG, 2000. Reports of the International Ocean-Colour Coordinating Group Remote Sensing of Ocean Colour in Coastal , and Other Optically-Complex , Waters, Reports and Monographs of the International OceanColour Coordinating Group.

Jaelani, L.M., Setiawan, F., Wibowo, H., Apip, 2015. Pemetaan Distribusi Spasial Konsentrasi Klorofil-A dengan Landsat 8 di Danau Matano dan Danau Towuti , Sulawesi Selatan. Pros. Pertem. Ilm. Tah. XX 456–463. https://doi.org/10.13140/RG.2.1.4278.6000

Jerlov, N.G., 1976. Marine optics. Elsevier.

Kirk, J.T.O., 2011. Light and photosynthesis in aquatic ecosystems, third edition, Light and Photosynthesis in Aquatic Ecosystems, third edition. https://doi.org/10.1017/CBO9781139168212

Lee, Z.P., Darecki, M., Carder, K.L., Davis, C.O., Stramski, D., Rhea, W.J., 2005. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Res. C Ocean. 110, 1–9. https://doi.org/10.1029/2004JC002573.

Lubis, M. Z., Taki, H. M., Anurogo, W., Pamungkas, D. S., Wicaksono, P., & Aprilliyanti, T. (2017, December). Mapping the distribution of potential land drought in Batam Island using the integration of remote sensing and geographic information systems (GIS). In IOP Conference Series: Earth and Environmental Science (Vol. 98, No. 1, p. 012012). IOP Publishing.

Lymburner, L., Botha, E., Hestir, E., Anstee, J., Sagar, S., Dekker, A., Malthus, T., 2016. Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 185, 108–118. https://doi.org/10.1016/j.rse.2016.04.011

Makridakis, S., 2000. The M3-Competition : results , conclusions and implications 16, 451–476.

Mobley, C.D., 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 38, 7442. https://doi.org/10.1364/AO.38.007442

Morel, A., Maritorena, S., 2001. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Ocean. 106, 7163–7180. https://doi.org/10.1029/2000JC000319

Mueller, J.L., Bidigare, R.R., Trees, C., Balch, W.M., Dore, J., Drapeau, D.T., Karl, D.M., Van Heukelem, L., Perl, J., 2003. Ocean optics protocols for satellite ocean color sensor validation, Revision 5, Volume V: Biogeochemical and bio-optical measurements and data analysis protocols. Ocean Color web page V, 36.

Nababan, B., Louhenapessy, V.S.A., Arhatin, R.E., 2013. DOWNWELLING DIFFUSE ATTENUATION COEFFICIENTS FROM IN SITU MEASUREMENTS OF DIFFERENT WATER TYPES. Int. J. Remote Sens. Earth Sci. 10.

Pahlevan, N., Schott, J.R., 2013. Leveraging EO-1 to evaluate capability of new generation of landsat sensors for coastal/inland water studies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6, 360–374. https://doi.org/10.1109/JSTARS.2012.2235174

Parwati, E., Purwanto, A.D., 2017. Time Series Analysis of Total Suspended Solid (Tss) Using Landsat Data in Berau Coastal Area, Indonesia. Int. J. Remote Sens. Earth Sci. 14, 61. https://doi.org/10.30536/j.ijreses.2017.v14.a2676

Prasetyo, B.A., Siregar, V.P., Agus, S.B., Asriningrum, W., 2018. PENGUKURAN KOEFISIEN DIFFUSE ATENUASI (Kd) DI PERAIRAN DANGKAL SEKITAR KARANG LEBAR, KEPULAUAN SERIBU, DKI JAKARTA. J. Teknol. Perikan. dan Kelaut. 8, 127. https://doi.org/10.24319/jtpk.8.127-138

Prasetyo, B.A., Siregar, V.P., Agus, S.B., Asriningrum, W., 2017. IN-SITU MEASUREMENT OF DIFFUSE ATTENUATION COEFFICIENT AND ITS RELATIONSHIP WITH WATER CONSTITUENT AND DEPTH ESTIMATION OF SHALLOW WATERS BY REMOTE SENSING TECHNIQUE. Int. J. Remote Sens. Earth Sci. 14, 47. https://doi.org/10.30536/j.ijreses.2017.v14.a2682

Salama, M.S., Verhoef, W., 2015. Two-stream remote sensing model for water quality mapping: 2SeaColor. Remote Sens. Environ. 157, 111–122. https://doi.org/10.1016/j.rse.2014.07.022

Saulquin, B., Hamdi, A., Gohin, F., Populus, J., Mangin, A., d’Andon, O.F., 2013. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sens. Environ. 128, 224–233. https://doi.org/10.1016/j.rse.2012.10.002

Smith, R.C., Baker, K.S., 1981. Optical properties of the clearest natural waters (200--800 nm). Appl. Opt. 20, 177–184.

U.S. Geological Survey, 2016. Landsat 8 Data Users Handbook. Nasa 8, 97.

Vanderstraete, T., Goossens, R., GHABOUR, T., 2004. Coral reef bottom-type mapping in the Red Sea (Hurghada, Egypt) based on remote sensing. EARSeL eProceedings 3 (2), 191–207.

Wang, G., Cao, W., Yang, D., Xu, D., 2008. Variation in downwelling diffuse attenuation coefficient in the northern South China Sea. Chinese J. Oceanol. Limnol. 26, 323–333. https://doi.org/10.1007/s00343-008-0323-x

Wang, M., Son, S.H., Harding, L.W., 2009. Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications. J. Geophys. Res. Ocean. 114, 20482–20493. https://doi.org/10.1029/2009JC005286

Zheng, Z., Ren, J., Li, Y., Huang, C., Liu, G., Du, C., Lyu, H., 2016. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake. Sci. Total Environ. 573, 39–54. https://doi.org/10.1016/j.scitotenv.2016.08.019

Published
2021-01-16