Estimation of Attenuation Coefficient Values Using Remote Sensing and Its Relationship With Shallow Water Depth
Abstract
In ocean remote sensing, the intensity of light entering the water column decreases exponentially with increasing depth due to scattering and particle absorption in the water column. This process of decreasing light intensity is called attenuation. Attenuation is a limiting factor in detecting objects in the water column and seafloor using remote sensing, which relies on light intensity. The attenuation coefficient (Kd) is an important optical property of seawater as it provides information about water clarity and the level of light attenuation. This study aims to analyze the estimation of the attenuation coefficient values and their variability using in-situ measurements and Sentinel-2 level 2A data in Karang Lebar, Pulau Panggang, and Pulau Air, in the Seribu Islands Regency, North Jakarta. We tested several algorithms to estimate the attenuation coefficient values. The research results show that the in-situ Kd and the estimated model values have a good correlation (r = 0.75-0.86). The distribution of attenuation coefficient values in the shallow waters of the study area ranges from 0.06 to 0.18m-1. The accuracy of estimating shallow water depth at the study sites was best represented by R2 and RMSE values in the range of 0-5m with an attenuation coefficient of 0.06-0.11m-1.
Keywords: Diffuse Attenuation Coefficient, Remote Sensing, Sentinel-2 Imagery, Algorithm.
Downloads
References
Adi, N.S., Phinn, S., Roelfsema, C., 2013. Estimating The Diffuse Attenuation Coefficient From Moderate- Spatial Resolution, Multispectral Satellite Data In A Seagrass Environment Novi Susetyo Adi, Stuart Phinn, Chris Roelfsema Biophysical Remote Sensing Group, Centre for Spatial Environmenta 310–313.
Ambarwulan, W., 2012. The Spatio Temporal Dynamic Of Diffuse Attenuation Coefficient In The Tropical Berau Estuary, East Kalimantan Indonesia.
Brewin, R.J.W., Raitsos, D.E., Dall'Olmo, G., Zarokanellos, N., Jackson, T., Racault, M.F., Boss, E.S., Sathyendranath, S., Jones, B.H., Hoteit, I., 2015. Regional ocean-color chlorophyll algorithms for the Red Sea. Remote Sens. Environ. 165, 64–85. https://doi.org/10.1016/j.rse.2015.04.024
Castillo-ram, A., Santamar, E., Gonz, A., Frouin, R., Tan, J., Lopez-calderon, J., Laura, S., Enr, L., 2020. A New Algorithm to Estimate Diffuse Attenuation Coefficient from Secchi Disk Depth. J. Mar. Sci. Eng. 8,558;doi:10.3390/jmse8080558
Dewi, R.S., Rizaldy, A., Hartanto, P., Suprajaka, 2016. Assessing The Accuracy Of Shallow Water Depth Estimation By Using Multispectral Satellite Images 11, 39–50. https://doi.org/10.21163/GT
Gallegos, C.L., Werdell, P.J., McClain, C.R., 2011. Long-term changes in light scattering in the Chesapeake Bay were inferred from Secchi depth, light attenuation, and remote sensing measurements. J. Geophys. Res. Ocean. 116. https://doi.org/10.1029/2011JC007160
Herianto, Barus, B., Siregar, V.P., 2023. Pengaruh Kenaikan Muka Air Laut terhadap Keberadaan Pulau-pulau Kecil Studi Kasus di Pulau Panggang dan Pulau Pramuka , Kabupaten Administrasi Kepulauan Seribu.
J.L. Mueller, 2000. SeaWifs Algorithm for the Diffuse Attenuation Coefficient, K(490), Using Water-Leaving RadianWces at 490 And 555nm. SeaWiFS Postlaunch Calibration Valid. Anal. 3, 51pp.
Jaelani, L.M., Limehuwey, R., Kurniadin, N., Pamungkas, A., Koenhardono, E.S., Sulisetyono, A., 2016. Estimation of Total Suspended Sediment and Chlorophyll-A Concentration from Landsat 8-Oli: The Effect of Atmosphere and Retrieval Algorithm. IPTEK J. Technol. Sci. 27, 16–23. https://doi.org/10.12962/j20882033.v27i1.1217
Lee, Z., Shang, S., Du, K., Wei, J., 2018. Resolving the long-standing puzzles about the observed Secchi depth relationships. Limnol. Oceanogr. 63, 2321–2336. https://doi.org/10.1002/lno.10940
Lee, Z.P., Darecki, M., Carder, K.L., Davis, C.O., Stramski, D., Rhea, W.J., 2005. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Res. Ocean. 110, 1–9. https://doi.org/10.1029/2004JC002573
Manessa, M.D.M., Haidar, M., Budhiman, S., Winarso, G., Kanno, A., Sagawa, T., Sekine, M., 2016. Evaluating the performance of Lyzenga’s water column correction in case-1 coral reef water using a simulated Wolrdview-2 imagery. IOP Conf. Ser. Earth Environ. Sci. 47. https://doi.org/10.1088/1755-1315/47/1/012018
Meliani, F., Siregar, V.P., Hendiarti, N., Parwati, E., 2019. Pengukuran Koefisien Atenuasi Dan Hubungannya Dengan Kualitas Air Di Perairan Kelurahan Pulau Panggang. J. Teknol. Pelikan. Dan Kelaut. 9, 73–81. https://doi.org/10.24319/jtpk.9.73-81
Mobley, C.D., Stramski, D., Paul Bissett, W., Boss, E., 2004. Optical modeling of ocean waters: Is the case 1 - case 2 classification still useful? Oceanography 17, 60–67. https://doi.org/10.5670/oceanog.2004.48
Palmer, S.C.J., Kutser, T., Hunter, P.D., 2015. Remote sensing of inland waters: Challenges, progress, and future directions. Remote Sens. Environ. 157, 1–8. https://doi.org/10.1016/j.rse.2014.09.021
Prasetyo, B.A., Siregar, V.P., Agus, S.B., Asriningrum, W., 2018. Pengukuran Koefisien Diffuse Atenuasi (Kd) Di Perairan Dangkal Sekitar Karang Lebar, Kepulauan Seribu, Dki Jakarta. J. Teknol. Pelikan. dan Kelaut. 8, 127–138. https://doi.org/10.24319/jtpk.8.127-138
Saulquin, B., Hamdi, A., Gohin, F., Populus, J., Mangin, A., d’Andon, O.F., 2013. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sens. Environ. 128, 224–233. https://doi.org/10.1016/j.rse.2012.10.002
Trouw, R., Passchier, C., Wiersma, D., 2009. Atlas of Mylonites- and related microstructures. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03608-8
Zhang, Y., Liu, X., Yin, Y., Wang, M., Qin, B., 2012. Predicting the light attenuation coefficient through Secchi disk depth and beam attenuation coefficient in a large, shallow freshwater lake. Hydrobiologia 693, 29–37. https://doi.org/10.1007/s10750-012-1084-2
Copyright (c) 2023 Journal of Applied Geospatial Information
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JAGI are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.