Design and Development of A Digital Soil Temperature Monitoring System Based on The Internet of Things at North Sumatra Climatological Station
Abstract
Soil temperature is a crucial parameter in monitoring and understanding climate and soil ecosystems. It plays a vital role in various environmental aspects, including agriculture, ecology, and geoscience. Monitoring soil temperature is necessary for planning and managing agriculture and natural resources. Currently, temporal observations of soil temperature by BMKG are limited, conducted only at 07:55, 13:55, and 18:55 local time. This limitation makes it difficult to perform detailed soil temperature analysis. This research was conducted to design a digital soil temperature monitoring device accessible via the internet. Seven DS18B20 sensors were used at depths of 0 cm, 2 cm, 5 cm, 10 cm, 20 cm, 50 cm, and 100 cm, combined with an ESP8266 module using the Arduino system. The implementation of this design resulted in a real-time soil temperature monitoring system with data updates every 10 seconds. The observed data are displayed on a 20x4 LCD and sent to the cloud, making them accessible on the webpage http://monitoringsuhutanah.my.id. Calibration results indicate that the DS18B20 sensors used in this study provide accurate and consistent temperature measurements, with an average correction range of (-0.20) to 0.24, thus suitable for operational use. Field tests show that the digital data are accurate and correspond (linearly correlate) with conventional data. This is based on a correlation value of 0.7, while the RMSE values range from 0.5 to 2.18 and the bias ranges from (-0.69) to 0.08.
Downloads
References
ARDUINO corp. (2022). Arduino Integrated Development Environment (IDE) v1 | Arduino Documentation | Arduino Documentation. on Arduino Docs.
Asnawi, Y., Simanjuntak, A. V., Umar, M., Rizal, S., & Syukri, M. (2020). A Microtremor Survey to Identify Seismic Vulneralbility Around Banda Aceh Using HVSR Analisis. Elkawnie: Journal of Islamic Science and Technology, 6(2), 342-358.
Asnawi, Y., Simanjuntak, A., Muksin, U., Rizal, S., Syukri, M. S. M., Maisura, M., & Rahmati, R. (2022). Analysis of microtremor H/V spectral ratio and public perception for disaster mitigation. GEOMATE Journal, 23(97), 123-130.
Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010
Brady, N. C., Weil, R. R., & Weil, R. R. (2008). The nature and properties of soils (Vol. 13). Prentice Hall Upper Saddle River, NJ.
Campbell, G. S., & Norman, J. M. (1998). An Introduction to Environmental Biophysics (2nd Edition). Springer Science & Business Media.
Dallas Semiconductor. (2002). DS18B20 Temperature Sensor. Dallas semiconductor datasheets.
Espressif Systems. (2023). ESP8266EX Datasheet (7.0). Espressif Systems.
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10. https://doi.org/10.1016/j.wace.2015.08.001
Idha, R., Sari, E. P., Asnawi, Y., Simanjuntak, A. V., Humaidi, S., & Muksin, U. (2023). 1-Dimensional Model of Seismic Velocity after Tarutung Earthquake 1 October 2022 Mw 5.8. Journal of Applied Geospatial Information, 7(1), 825-831.
Maxim Integrated. (2015). DS18B20 Programmable Resolution 1-Wire Digital Thermometer General Description. Datasheet, 92.
Muksin, U., Arifullah, A., Simanjuntak, A. V., Asra, N., Muzli, M., Wei, S., ... & Okubo, M. (2023). Secondary fault system in Northern Sumatra, evidenced by recent seismicity and geomorphic structure. Journal of Asian Earth Sciences, 245, 105557.
Nurana, I., Simanjuntak, A. V. H., Umar, M., Kuncoro, D. C., Syamsidik, S., & Asnawi, Y. (2021). Spatial Temporal Condition of Recent Seismicity in The Northern Part of Sumatra. Elkawnie: Journal of Islamic Science and Technology, 7(1), 131-145.
Preston-Thomas, H. (1990). The International Temperature Scale of 1990(ITS-90). Metrologia, 27(1), 3–10.
Rose, C. W. (2004). An Introduction to the Environmental Physics of Soil, Water and Watersheds. Cambridge University Press.
Salam, A. K. (2020). Ilmu Tanah. Global Madani Press.
Saragih, I. J. A., Kristianto, A., Silitonga, A. K., & Paski, J. A. I. (2017). Kajian Dinamika Atmosfer saat Kejadian Hujan Lebat di Wilayah Pesisir Timur Sumatera Utara Menggunakan Model WRF-ARW dan Citra Satelit Himawari-8. Unnes Physics Journal, 6(1), 25-30.
Saragih, I. J. A., Rumahorbo, I., Yudistira, R., & Sucahyono, D. (2020). Prediksi Curah Hujan Bulanan Di Deli Serdang Menggunakan Persamaan Regresi Dengan Prediktor Data Suhu Dan Kelembapan Udara. Jurnal Meteorologi Klimatologi dan Geofisika, 7(2), 6-14.
Saragih, I. J. A., Mukhsinin, H. A., Tarigan, K., Sinambela, M., Situmorang, M., Sembiring, K., & Humaidi, S. (2021, November). Improvement in WRF model prediction for heavy rain events over North Sumatra region using satellite data assimilation. In IOP Conference Series: Earth and Environmental Science (Vol. 893, No. 1, p. 012040). IOP Publishing.
Sari, E. P., Idha, R., Asnawi, Y., Simanjuntak, A., Humaidi, S., & Muksin, U. (2023). Faulting Mechanism of Tarutung Earthquake 2022 Mw 5.8 Using Moment Tensor Inversion. Journal of Applied Geospatial Information, 7(1), 840-846.
Simanjuntak, A. V., & Ansari, K. (2022). Seismicity clustering of sequence phenomena in the active tectonic system of backthrust Lombok preceding the sequence 2018 earthquakes. Arabian Journal of Geosciences, 15(23), 1730.
Simanjuntak, A. V., & Ansari, K. (2023). Spatial time cluster analysis and earthquake mechanism for unknown active fault (Kalatoa fault) in the Flores Sea. Earth Science Informatics, 16(3), 2649-2659.
Simanjuntak, A. V., Muksin, U., & Setiawan, Y. (2019, June). Source Mechanism Analysis By Using Tensor Moment Inversion (Study Case: Pidie Jaya Earthquake in 2016 December 7th). In IOP Conference Series: Earth and Environmental Science (Vol. 273, No. 1, p. 012021). IOP Publishing.
Simanjuntak, A. V., Muksin, U., & Sipayung, R. M. (2018, December). Earthquake relocation using HypoDDMethod to investigate active fault system in Southeast Aceh. In Journal of Physics: Conference Series (Vol. 1116, No. 3, p. 032033). IOP Publishing.
Simanjuntak, A. V., Palgunadi, K. H., Supendi, P., Daryono, D., Prakoso, T. A., & Muksin, U. (2023). New Insight on the Active Fault System in the Halmahera Volcanic Arc, Indonesia, Derived from the 2022 Tobelo Earthquakes. Seismological Research Letters, 94(6), 2586-2594.
Simanjuntak, A., Muksin, U., Asnawi, Y., Rizal, S., & Wei, S. (2022). Recent Seismicity and Slab Gap Beneath Toba Caldera (Sumatra) Revealed Using Hypocenter Relocation Methodology. Geomate Journal, 23(99), 82-89.
Copyright (c) 2023 Journal of Applied Geospatial Information
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JAGI are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.