Optimization of Spatial Disaster Profile Database for Spatial Disaster Risk Analysis
DOI:
https://doi.org/10.30871/jagi.v9i2.11266Keywords:
geographic information system, disaster management, non-relational database, data integrationAbstract
This study developed a dynamic, web-based integrated spatial disaster profile database system that is highly vulnerable to various types of natural hazards, using Lebak Regency as a case study. The reference for each profile displayed is the Indonesian Disaster Risk (RBI). The output of this study is a web performance overview consisting of an interactive HTML-based frontend integrated with the backend spatial data management using MongoDB, Python, and JavaScript. This system provides district-level statistical summaries, visualizations with thematic classifications, and an automatic update feature via API simulation. In addition, this system integrates spatial and non-spatial data. Based on the evaluation, this system improves the effectiveness of data collection and utilization, supports evidence-based decision making, and strengthens cross-sector collaboration. The use of a non-relational database architecture optimized for dynamic spatial data with synchronous updates and web-based distribution is a major innovation with the hope of creating a standardized and adaptive disaster information system that can be replicated in other regions with similar risks.
Downloads
References
Asante, K. O., Verdin, J. P., Crane, M. P., Tokar, S. A., and Rowland, J. (2006). The Role of Spatial Data Infrastructure in the Management of Natural Disasters. http://www.geo-one-stop.gov/
Barai, S. A., Marimin, M., Suharnoto, Y., Muslim, G. O., Rotinsulu, W. C., Walangitan, H. D., Paat, F. J., Yuniawati, E. I., Muslim, F. N., Fahira, G. H., and Tuanany, N. K. (2025). Geospatial Data Integration for Enhanced Local Governance: A Case Study of Bogor and Bekasi Regencies (pp. 145–166). https://doi.org/10.2991/978-2-38476-406-8_12
Faiella, A., Menoni, S., Boni, M. P., Panoutsopoulou, M., Thoma, T., Salari, S., and Rueda, N. (2022). Enabling Knowledge through Structured Disaster Damage and Loss Data Management System. Sustainability (Switzerland), 14(10). https://doi.org/10.3390/su14106187
Han, Y., and Liu, G. (2025). The Role of GIS in Disaster Response: Improving Efficiency and Overcoming Challenges. Theoretical and Natural Science, 81(1), 81–88. https://doi.org/10.54254/2753-8818/2025.21259
Hutchings, S. J., and Mooney, W. D. (2021). The Seismicity of Indonesia and Tectonic Implications. Geochemistry, Geophysics, Geosystems, 22(9). https://doi.org/10.1029/2021GC009812
Jailani, Z. F. (2019). Assessing Indonesia Spatial Data Infrastructure Using R for Disaster Management. International Journal on Advanced Science, Engineering and Information Technology, 9(6), 1807–1812. https://doi.org/10.18517/IJASEIT.9.6.4173
Maia, D. C. M., Camargos, B. D. C., and Holanda, M. (2018). Performance Analysis on Voluntary Geographic Information Systems with Document-Based NoSQL Database. Studies in Computational Intelligence, 718, 181–197. https://doi.org/10.1007/978-3-319-58965-7_13
Narieswari, L., Sitorus, S. R. P., Hardjomidjojo, H., and Putri, E. I. K. (2022). Spatial Dynamic Model of Index-Based Disaster Resilience. Journal of Regional and City Planning, 33(3), 405–420. https://doi.org/10.5614/jpwk.2022.33.3.7
Paskalis, Y. (2025). BNPB Records 1,713 Natural Disasters in Indonesia per June 2025. Tempo. https://en.tempo.co/read/2022045/bnpb-records-1713-natural-disasters-in-indonesia-per-june-2025
Suryana, M. (2025). BPBD Lebak Siaga Hadapi Bencana Hidrometeorologi. Antara News Banten. https://banten.antaranews.com/berita/307445/bpbd-lebak-siaga-hadapi-bencana-hidrometeorologi?utm_source=chatgpt.com
Sveen, A. F. (2019). Efficient storage of heterogeneous geospatial data in spatial databases. Journal of Big Data, 6(1), 1–14. https://doi.org/10.1186/S40537-019-0262-8/FIGURES/7
Ward, P. J., Daniell, J., Duncan, M., Dunne, A., Hananel, C., Hochrainer-Stigler, S., Tijssen, A., Torresan, S., Ciurean, R., Gill, J. C., Sillmann, J., Couasnon, A., Koks, E., Padrón-Fumero, N., Tatman, S., Tronstad Lund, M., Adesiyun, A., Aerts, J. C. J. H., Alabaster, A., … De Ruiter, M. C. (2022). Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment. Natural Hazards and Earth System Sciences, 22(4), 1487–1497. https://doi.org/10.5194/nhess-22-1487-2022
Wibowo, A., Rohman, N., Rusdah, Achadi, A. H., and Amri, I. (2024). Clustering Indonesian Provinces by Disaster Intensity using K-Means Algorithm: a Data Mining Approach. Disaster Advances, 17(12), 1–8. https://doi.org/10.25303/1712da0108
Zhang, D., Wei, Y., Xiao, C., Wang, J., and Wang, J. (2021). A Multi-level Dynamic Database Model of Geological Disaster Emergency Remote Sensing Monitoring. Proceedings - 2021 28th International Conference on Geoinformatics, Geoinformatics 2021, Nanchang. https://doi.org/10.1109/IEEECONF54055.2021.9687657
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Journal of Applied Geospatial Information

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JAGI are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.




