Optimization of Spatial Disaster Profile Database for Spatial Disaster Risk Analysis

Authors

  • Diagy Muhammad Haviz Geodesy and Geomatics Engineering Postgraduate Program, Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung 40132, West Java, Indonesia .
  • Bambang Setyadji Geodesy and Geomatics Engineering Postgraduate Program, Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung 40132, West Java, Indonesia .
  • Riantini Virtriana Geodesy and Geomatics Engineering Postgraduate Program, Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung 40132, West Java, Indonesia .

DOI:

https://doi.org/10.30871/jagi.v9i2.11266

Keywords:

geographic information system, disaster management, non-relational database, data integration

Abstract

This study developed a dynamic, web-based integrated spatial disaster profile database system that is highly vulnerable to various types of natural hazards, using Lebak Regency as a case study. The reference for each profile displayed is the Indonesian Disaster Risk (RBI). The output of this study is a web performance overview consisting of an interactive HTML-based frontend integrated with the backend spatial data management using MongoDB, Python, and JavaScript. This system provides district-level statistical summaries, visualizations with thematic classifications, and an automatic update feature via API simulation. In addition, this system integrates spatial and non-spatial data. Based on the evaluation, this system improves the effectiveness of data collection and utilization, supports evidence-based decision making, and strengthens cross-sector collaboration. The use of a non-relational database architecture optimized for dynamic spatial data with synchronous updates and web-based distribution is a major innovation with the hope of creating a standardized and adaptive disaster information system that can be replicated in other regions with similar risks.

Downloads

Download data is not yet available.

References

Asante, K. O., Verdin, J. P., Crane, M. P., Tokar, S. A., and Rowland, J. (2006). The Role of Spatial Data Infrastructure in the Management of Natural Disasters. http://www.geo-one-stop.gov/

Barai, S. A., Marimin, M., Suharnoto, Y., Muslim, G. O., Rotinsulu, W. C., Walangitan, H. D., Paat, F. J., Yuniawati, E. I., Muslim, F. N., Fahira, G. H., and Tuanany, N. K. (2025). Geospatial Data Integration for Enhanced Local Governance: A Case Study of Bogor and Bekasi Regencies (pp. 145–166). https://doi.org/10.2991/978-2-38476-406-8_12

Faiella, A., Menoni, S., Boni, M. P., Panoutsopoulou, M., Thoma, T., Salari, S., and Rueda, N. (2022). Enabling Knowledge through Structured Disaster Damage and Loss Data Management System. Sustainability (Switzerland), 14(10). https://doi.org/10.3390/su14106187

Han, Y., and Liu, G. (2025). The Role of GIS in Disaster Response: Improving Efficiency and Overcoming Challenges. Theoretical and Natural Science, 81(1), 81–88. https://doi.org/10.54254/2753-8818/2025.21259

Hutchings, S. J., and Mooney, W. D. (2021). The Seismicity of Indonesia and Tectonic Implications. Geochemistry, Geophysics, Geosystems, 22(9). https://doi.org/10.1029/2021GC009812

Jailani, Z. F. (2019). Assessing Indonesia Spatial Data Infrastructure Using R for Disaster Management. International Journal on Advanced Science, Engineering and Information Technology, 9(6), 1807–1812. https://doi.org/10.18517/IJASEIT.9.6.4173

Maia, D. C. M., Camargos, B. D. C., and Holanda, M. (2018). Performance Analysis on Voluntary Geographic Information Systems with Document-Based NoSQL Database. Studies in Computational Intelligence, 718, 181–197. https://doi.org/10.1007/978-3-319-58965-7_13

Narieswari, L., Sitorus, S. R. P., Hardjomidjojo, H., and Putri, E. I. K. (2022). Spatial Dynamic Model of Index-Based Disaster Resilience. Journal of Regional and City Planning, 33(3), 405–420. https://doi.org/10.5614/jpwk.2022.33.3.7

Paskalis, Y. (2025). BNPB Records 1,713 Natural Disasters in Indonesia per June 2025. Tempo. https://en.tempo.co/read/2022045/bnpb-records-1713-natural-disasters-in-indonesia-per-june-2025

Suryana, M. (2025). BPBD Lebak Siaga Hadapi Bencana Hidrometeorologi. Antara News Banten. https://banten.antaranews.com/berita/307445/bpbd-lebak-siaga-hadapi-bencana-hidrometeorologi?utm_source=chatgpt.com

Sveen, A. F. (2019). Efficient storage of heterogeneous geospatial data in spatial databases. Journal of Big Data, 6(1), 1–14. https://doi.org/10.1186/S40537-019-0262-8/FIGURES/7

Ward, P. J., Daniell, J., Duncan, M., Dunne, A., Hananel, C., Hochrainer-Stigler, S., Tijssen, A., Torresan, S., Ciurean, R., Gill, J. C., Sillmann, J., Couasnon, A., Koks, E., Padrón-Fumero, N., Tatman, S., Tronstad Lund, M., Adesiyun, A., Aerts, J. C. J. H., Alabaster, A., … De Ruiter, M. C. (2022). Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment. Natural Hazards and Earth System Sciences, 22(4), 1487–1497. https://doi.org/10.5194/nhess-22-1487-2022

Wibowo, A., Rohman, N., Rusdah, Achadi, A. H., and Amri, I. (2024). Clustering Indonesian Provinces by Disaster Intensity using K-Means Algorithm: a Data Mining Approach. Disaster Advances, 17(12), 1–8. https://doi.org/10.25303/1712da0108

Zhang, D., Wei, Y., Xiao, C., Wang, J., and Wang, J. (2021). A Multi-level Dynamic Database Model of Geological Disaster Emergency Remote Sensing Monitoring. Proceedings - 2021 28th International Conference on Geoinformatics, Geoinformatics 2021, Nanchang. https://doi.org/10.1109/IEEECONF54055.2021.9687657

Downloads

Published

2025-12-26