A Study on Reducing Measurement Fluctuations in Iron-Electrode Salinity Sensor Using Moving Average and Kalman Filters

Authors

  • Dananjaya Endi Pratama Department of Electrical Engineering, Universitas Jember, Jember, Indonesia
  • Muhammad Aldino Habibulloh Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
  • Muhammad Riza Darmawan Department of Electrical Engineering, Universitas Jember, Jember, Indonesia
  • Candra Putri Rizkiyah Ramadhani Department of Electrical Engineering, Universitas Jember, Jember, Indonesia
  • Mohammad Erdianto Triputradi Department of Electrical Engineering, Universitas Jember, Jember, Indonesia
  • Martiana Kholila Fadhil Department of Information System, Universitas Jember, Jember, Indonesia

DOI:

https://doi.org/10.30871/jaee.v9i1.9539

Keywords:

Digital Filter, Kalman Filter, Moving Average Filter, Salinity Sensor

Abstract

Indonesia is recognized as one of the leading shrimp-producing countries globally, with most farms operating on a small scale using traditional methods. This creates a strong demand for low-cost technologies to support aquaculture. One critical component in shrimp farming is water quality monitoring, where salinity is a key parameter affecting shrimp health and growth. Affordable salinity sensors using iron electrodes are increasingly considered. However, they often produce unstable and fluctuating readings, compromising monitoring reliability. This study addresses the issue by applying digital filters to enhance the stability of salinity sensor data. Two filtering methods, Moving Average and Kalman filters were evaluated using salinity ADC data from previous research. The analysis focused on comparing their effectiveness in stabilizing measurements. Results show that the Moving Average filter outperformed the Kalman filter, providing lower standard deviation values (87,09, 65,69, 63,67) and variance values (7,5807E+03, 4,3150E+03, 4,0542E+03), confirming its suitability for improving low-cost salinity sensor performance.

Downloads

Download data is not yet available.

References

[1] C. Béné et al., “Feeding 9 billion by 2050 – Putting fish back on the menu,” Food Secur., vol. 7, no. 2, pp. 261–274, 2015, doi: 10.1007/s12571-015-0427-z.

[2] C. E. Boyd, R. P. Davis, and A. A. McNevin, “Comparison of resource use for farmed shrimp in Ecuador, India, Indonesia, Thailand, and Vietnam,” Aquac. Fish Fish., vol. 1, no. 1, pp. 3–15, 2021, doi: 10.1002/aff2.23.

[3] N. T. Q. Kim, H. Van Hien, L. N. Doan Khoi, N. Yagi, and A. K. Lerøy Riple, “Quality management practices of intensive whiteleg shrimp (Litopenaeus vannamei) farming: A Study of the Mekong delta, Vietnam,” Sustain., vol. 12, no. 11, 2020, doi: 10.3390/su12114520.

[4] C. Leigh et al., “Rice-shrimp ecosystems in the Mekong Delta: Linking water quality, shrimp and their natural food sources,” Sci. Total Environ., vol. 739, no. December 2017, p. 139931, 2020, doi: 10.1016/j.scitotenv.2020.139931.

[5] Supono, Teknologi Produksi Udang. Bandar Lampung: Plantaxia, 2017.

[6] Muzahar, Teknologi dan Manajemen Budidaya Udang. Tanjungpinang: UMRAH PRESS, 2020.

[7] F. P. Nurmaida et al., “Water Quality Meter Module to improve shrimp production quality in Mojopuro Gede Village, Gresik,” Abdimas J. Pengabdi. Masy. Univ. Merdeka Malang, vol. 8, no. 1, pp. 93–102, 2023, doi: 10.26905/abdimas.v1i1.8673.

[8] D. E. Pratama, A. I. Gunawan, R. T. Widodo, and A. Hendriawan, “Salinity Sensor Development for Pond Water Utilizing Ultrasonic Wave,” J. Segara, vol. 18, no. 2, pp. 95–104, 2022, doi: 10.15578/segara.v18i2.

[9] S. Suryono, W. Widowati, S. P. Putro, and S. Sunarno, “A capacitive model of water salinity wireless sensor system based on WIFI-microcontroller,” 2018 6th Int. Conf. Inf. Commun. Technol. ICoICT 2018, vol. 0, no. c, pp. 211–215, 2018, doi: 10.1109/ICoICT.2018.8528796.

[10] D. Gümüş, “Electrochemical Treatment of a Real Textile Wastewater Using Cheap Electrodes and Improvement in Cod Removal,” Water. Air. Soil Pollut., vol. 234, no. 5, pp. 1–14, 2023, doi: 10.1007/s11270-023-06313-9.

[11] B. Zayat, D. Mitra, A. Irshad, A. S. Rajan, and S. R. Narayanan, “Inexpensive and robust iron-based electrode substrates for water electrolysis and energy storage,” Curr. Opin. Electrochem., vol. 25, no. 7, pp. 1–18, 2021, doi: 10.1016/j.coelec.2020.08.010.

[12] M. Guo, L. Feng, Y. Liu, and L. Zhang, “Electrochemical simultaneous denitrification and removal of phosphorus from the effluent of a municipal wastewater treatment plant using cheap metal electrodes,” Environtmental Sci. Water Res. Technol., vol. 6, no. 4, pp. 1095–1105, 2020, doi: 10.1039/D0EW00049C.

[13] W. H. Hung, B. Y. Xue, T. M. Lin, S. Y. Lu, and I. Y. Tsao, “A highly active selenized nickel–iron electrode with layered double hydroxide for electrocatalytic water splitting in saline electrolyte,” Mater. Today Energy, vol. 19, p. 100575, 2021, doi: 10.1016/j.mtener.2020.100575.

[14] Z. Yu et al., “Highly Efficient and Stable Saline Water Electrolysis Enabled by Self-Supported Nickel-Iron Phosphosulfide Nanotubes With Heterointerfaces and Under-Coordinated Metal Active Sites,” Adv. Funct. Mater., vol. 32, no. 38, pp. 1–12, 2022, doi: 10.1002/adfm.202206138.

[15] J. Zhao et al., “Efficient and Durable Sodium, Chloride-doped Iron Oxide-Hydroxide Nanohybrid-Promoted Capacitive Deionization of Saline Water via Synergetic Pseudocapacitive Process,” Adv. Sci., vol. 9, no. 25, pp. 1–12, 2022, doi: 10.1002/advs.202201678.

[16] M. A. Habibulloh, A. Indra Gunawan, Taufiqurrahman, and M. W. Kamaluddin, “Ninety Days of Observation on the Metal Electrodes of a Salinity Sensor for Vannamei Shrimp Farming Purposes,” 2024 Int. Electron. Symp. Shap. Futur. Soc. 5.0 Beyond, IES 2024 - Proceeding, pp. 165–170, 2024, doi: 10.1109/IES63037.2024.10665872.

[17] T. hoon Kim, V. S. Solanki, H. J. Baraiya, A. Mitra, H. Shah, and S. Roy, “A smart, sensible agriculture system using the exponential moving average model,” Symmetry (Basel)., vol. 12, no. 3, pp. 1–15, 2020, doi: 10.3390/sym12030457.

[18] H. Song, S. Sui, Q. Han, H. Zhang, and Z. Yang, “Autoregressive integrated moving average model–based secure data aggregation for wireless sensor networks,” Int. J. Distrib. Sens. Networks, vol. 16, no. 3, pp. 1–12, 2020, doi: 10.1177/1550147720912958.

[19] R. I. Alfian, A. Ma’Arif, and S. Sunardi, “Noise reduction in the accelerometer and gyroscope sensor with the Kalman filter algorithm,” J. Robot. Control, vol. 2, no. 3, pp. 180–189, 2021, doi: 10.18196/jrc.2375.

[20] Y. Yin, J. Zhang, M. Guo, X. Ning, Y. Wang, and J. Lu, “Sensor Fusion of GNSS and IMU Data for Robust Localization via Smoothed Error State Kalman Filter,” Sensors, vol. 23, no. 7, p. 3676, 2023, doi: 10.3390/s23073676.

[21] Y. Zhang, R. Wang, S. Li, and S. Qi, “Temperature Sensor Denoising Algorithm Based on Curve Fitting and Compound Kalman Filtering,” Sensors, vol. 20, no. 7, p. 1959, 2020, doi: 10.3390/s20071959.

[22] S. Metia, H. A. D. Nguyen, and Q. P. Ha, “IoT-enabled wireless sensor networks for air pollution monitoring with extended fractional-order kalman filtering,” Sensors, vol. 21, no. 16, pp. 1–16, 2021, doi: 10.3390/s21165313.

[23] A. K. Kumar, A. Sri Lakshmi, and P. J. N. Rao, “Moving average method based air pollution monitoring system using IoT platform,” J. Phys. Conf. Ser., vol. 1706, no. 1, pp. 1–6, 2020, doi: 10.1088/1742-6596/1706/1/012078.

[24] D. Schlichtarle, Digital Filters, 1st ed. Berlin: Springer Berlin, Heidelberg, 2000. doi: https://doi.org/10.1007/978-3-662-04170-3.

[25] R. A. Rachman, I. D. G. H. Wisana, and P. C. Nugraha, “Development of a Low-Cost and Effisient ECG devices with IIR Digital Filter Design,” Indones. J. Electron. Electromed. Eng. Med. informatics, vol. 3, no. 1, pp. 21–28, 2021, doi: 10.35882/ijeeemi.v3i1.4.

[26] K. S. Tey, W. C. Leong, T. A. Z. Rahman, K. N. Choong, and B. Kunjunni, “Data Analysis of Sensors Value Using Various Moving Average Methods,” in International Conference on Electrical, Electronics and System Engineering (ICEESE), 2024, pp. 1–5. doi: 10.1109/ICEESE62315.2024.10828550.

[27] A. H. Kuspranoto, T. Elektromedik, and K. Semarang, “Penerapan Digital Moving Average Filter Pada Skin Sensor Infant Warmer Untuk Mengukur Suhu Implementation Of Digital Moving Average Filter On Skin Sensor Infant Warmer To Measure Temperature,” vol. 5, no. 2, pp. 58–65, 2024, doi: 10.59485/jtemp.v5i2.93.

[28] A. Ma’arif, I. Iswanto, A. A. Nuryono, and R. I. Alfian, “Kalman Filter for Noise Reducer on Sensor Readings,” Signal Image Process. Lett., vol. 1, no. 2, pp. 11–22, 2019, doi: 10.31763/simple.v1i2.2.

[29] M. A. Schillaci and M. E. Schillaci, “Estimating the population variance, standard deviation, and coefficient of variation: Sample size and accuracy,” J. Hum. Evol., vol. 171, no. 1, 2022, doi: 10.1016/j.jhevol.2022.103230.

[30] J. Alvarez-Ramirez, E. Rodriguez, and J. C. Echeverría, “Detrending fluctuation analysis based on moving average filtering,” Phys. A Stat. Mech. its Appl., vol. 354, no. 1–4, pp. 199–219, 2005, doi: 10.1016/j.physa.2005.02.020.

Downloads

Published

2025-06-28 — Updated on 2025-06-28

Versions

How to Cite

Pratama, D. E., Habibulloh, M. A., Darmawan, M. R., Ramadhani, C. P. R., Triputradi, M. E., & Fadhil, M. K. (2025). A Study on Reducing Measurement Fluctuations in Iron-Electrode Salinity Sensor Using Moving Average and Kalman Filters. Journal of Applied Electrical Engineering, 9(1), 101–108. https://doi.org/10.30871/jaee.v9i1.9539

Issue

Section

Manuscripts