Optimizing Powertrain Disassembly Efficiency via Machine Learning -Based Lean Six Sigma at PT. TU Surabaya Branch

Authors

  • Ditto Nadendra Universitas Pembangunan Nasional Veteran, Jawa Timur, Indonesia
  • Wiwik Handayani Universitas Pembangunan Nasional Veteran, Jawa Timur, Indonesia

DOI:

https://doi.org/10.30871/jaba.10209

Keywords:

Decision Tree Regression, Lean Six Sigma, DMAIC, Process Cycle Efficiency, Operational Efficiency

Abstract

Operational efficiency is vital in mining and construction, were equipment availability drives productivity. This study assesses reconditioning effectiveness for Powertrain components at PT. TU Surabaya, focusing on the Disassembly stage the primary bottleneck in the maintenance cycle. Lean Six Sigma is applied using the DMAIC (Define, Measure, Analyze, Improve, Control) framework to identify, measure, and regulate service duration factors. Machine Learning, via Decision Tree Regression in KNIME, analyzes historical data to predict optimal Disassembly timeframes. Efficiency improvement is implemented using the 5S method, while a Decision Matrix prioritizes solutions to enhance overall system performance. Results from initial implementation show a reduction in average process duration from 26.37 days to 15.33 days. Predictive analysis also reflects an increase in Process Cycle Efficiency (PCE) from 46.49% to 53.20%. These findings affirm the effectiveness of a structured, data-driven operational strategy that combines Lean Six Sigma and predictive analytics to resolve service bottlenecks and improve industrial process outcomes.

Downloads

Download data is not yet available.

References

Acito, F. (2023). Predictive Analytics with KNIME. In Predictive Analytics with KNIME. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-45630-5

Adeodu, A., Kanakana-Katumba, M. G., & Rendani, M. (2021). Implementation of lean six sigma for production process optimization in a paper production company. Journal of Industrial Engineering and Management, 14(3), 661–680. https://doi.org/10.3926/jiem.3479

Antosz, K., Jasiulewicz-Kaczmarek, M., Waszkowski, R., & Machado, J. (2022). Application of Lean Six Sigma for sustainable maintenance: case study. IFAC-PapersOnLine, 55(19), 181–186. https://doi.org/10.1016/j.ifacol.2022.09.204

Bansal, M., Goyal, A., & Choudhary, A. (2022). A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decision Analytics Journal, 3, 100071. https://doi.org/10.1016/j.dajour.2022.100071

Çinar, Z. M., Nuhu, A. A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability (Switzerland), 12(19). https://doi.org/10.3390/su12198211

Daniyan, I., Adeodu, A., Mpofu, K., Maladzhi, R., & Kana-Kana Katumba, M. G. (2022). Application of lean Six Sigma methodology using DMAIC approach for the improvement of bogie assembly process in the railcar industry. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09043

Gomaa, A. H. (2023). Maintenance Process Improvement Framework Using Lean Six Sigma: A Case Study. International Journal of Business and Administrative Studies, 9, 1–25. https://doi.org/10.20469/ijbas.9.10001-1

Heizer, Jay., Render, Barry., & Munson, Chuck. (2020). Operations management : sustainability and supply chain management. Pearson.

Irahman, M. S., & Rayhan, M. S. (2024). Implementasi Prinsip Lean Six Sigma Dalam Meningkatkan Efisiensi Dan Efektifitas Proses Produksi Dan Distribusi Pada Makanan Dan Minuman.

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. https://doi.org/10.1007/s12525-021-00475-2/Published

Jiménez-Delgado, G., Quintero-Ariza, I., Romero-Gómez, J., Montero-Bula, C., Rojas-Castro, E., Santos, G., Sá, J. C., Londoño-Lara, L., Hernández-Palma, H., & Campis-Freyle, L. (2023). Implementation of Lean Six Sigma to Improve the Quality and Productivity in Textile Sector: A Case Study. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14028 LNCS, 395–412. https://doi.org/10.1007/978-3-031-35741-1_30

Luthra, S., Garg, D., Agarwal, A., & Mangla, S. K. (n.d.). Total Quality Management (TQM): Principles, Methods, and Applications.

Pongboonchai-Empl, T. (2023). DMAIC 4.0-Innovating the Lean Six Sigma Methodology with Industry 4.0 Technologies. https://doi.org/https://doi.org/10.1080/09537287.2025.2477724

S. Ariantini, M., Belferik, R., Sari H., O., Munizu, M., Ginting F., E., & Mardeni. (2023). SISTEM PENDUKUNG KEPUTUSAN : Konsep,Metode, dan Implementasi. PT. Sonpedia Publishing Indonesia.

Saputra, R. A., Yudoko, G., & Firman, A. F. (2023). Proposed Strategy of Heavy Equipment Overhaul: Case Study of a Coal Mining Contractor in Indonesia. European Journal of Business and Management Research, 8(4), 140–145. https://doi.org/10.24018/ejbmr.2023.8.4.2014

Shivaramu, P. (2025). Optimizing Manufacturing Processes with Predictive Maintenance Using Machine Learning and Lean Six Sigma. https://doi.org/https://dx.doi.org/10.2139/ssrn.5161097

Stern, T. V. (2024). Lean Six Sigma.

Tarantino, A. (2022). Additional Praise for Smart Manufacturing: The Lean Six Sigma Way.

Triantaphyllou, E. (2000). Multi-criteria Decision Making Methods: A Comparative Study (Vol. 44). Springer US. https://doi.org/10.1007/978-1-4757-3157-6

Villazón, C. C., Pinilla, L. S., Olaso, J. R. O., Gandarias, N. T., & de Lacalle, N. L. (2020). Identification of key performance indicators in project-based organisations through the lean approach. Sustainability (Switzerland), 12(15). https://doi.org/10.3390/su12155977.

Downloads

Published

2025-09-26

How to Cite

Nadendra, D., & Handayani, W. (2025). Optimizing Powertrain Disassembly Efficiency via Machine Learning -Based Lean Six Sigma at PT. TU Surabaya Branch. Journal of Applied Business Administration, 9(2), 439–454. https://doi.org/10.30871/jaba.10209