Aplikasi Penerapan Jaringan Syaraf Tiruan untuk Memprediksi Tingkat Pengangguran di Kota Batam dengan Menggunakan Algoritma Pembelajaran Backpropagation

  • Dodi Prima Resda Politeknik Negeri Batam
  • Jhon Hericson Purba Politeknik Negeri Batam
  • Miranda Miranda Politeknik Negeri Batam
  • Arista Sitanggang Politeknik Negeri Batam
  • Maidel Fani Politeknik Negeri Batam
  • Andy Triwinarko Politeknik Negeri Batam
Keywords: Artificial Neural Networks, Backpropagation, Predictions

Abstract

The imbalance between labor supply and demand often leads to unemployment in a given region. The unemployment rate serves as a key indicator to assess the overall health of the economy. Utilizing Artificial Neural Networks (ANN) as a predictive tool has emerged as a reliable solution to forecast unemployment rates in Batam City, using 7 input parameters. The methodology employed in this predictive model is the Backpropagation algorithm. This involves dividing the dataset into two distinct components: training data, consisting of 4 parts, and the remaining data set aside for testing purposes. This division results in a substantial allocation of 95% for training data and a significant 79% for testing data. The accuracy achieved by this model forms the basis to evaluate its potential success in forecasting unemployment rates for the upcoming year. By harnessing the capabilities of Artificial Neural Networks and employing the Backpropagation methodology, it is possible to predict unemployment rates in Batam City. The outcomes of this analytical approach can serve as a reference to address labor imbalance issues, while also providing a pragmatic tool to enhance economic planning and policy formulation for a more sustainable future.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik (BPS) Kota Batam.

Y. A. Lesnussa, S. Latuconsina, and E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA ( Studi kasus : Prediksi Prestasi Siswa SMAN 4 Ambon ),” Jurnal Matematika Integratif, vol. 11, no. 2, pp. 149–160, 2015.

E,dang Triana “ Model Permalan Harga Saham Dengan Jaringan Syaraf Tiruan Propagasi Balik” 2008.

M.F. Andrijasa dan Mistianingsih. (2010). “Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran Backpropagation” Vol 5 No. 1 Februari 2010.

Kurniawan, Arief. 2006, ” Jaringan Saraf Tiruan Teori Dan Aplikasi” , Andi Yogyakarta, Yogyakarta.

Randi Rian Putra (2019). “Implementasi Metode Backpropagation Jaringan Saraf Tiruan Dalam Memprediksi Pola Pengunjung Terhadap Transaksi” Vol.3, No.1. Juni 2019.

Juli Wahyunu, Yuri Widya Paranthy, Anjar Wanto (2018). “Analisis Jaringan Saraf Dalam Estimasi Tingkat Pengangguran Terbuka Penduduk Sumatera Utara” Vol.3 No.1 Juni 2018.

Maulia Usnaini, V. Y. (2021). Perancangan Sistem Informasi Pendataan Penduduk Berbasis Web Menggunakan Metode Waterfall. Jurnal Manajemen Informatika Jayakarta, 1, 36–55.

Irwanto. (2021). Perancangan Sistem Informasi Sekolah Kejuruan dengan Menggunakan Metode Waterfall (Studi Kasus SMK PGRI 1 Kota Serang-Banten). Lectura: Jurnal

“Metode Waterfall: Pengertian, Sejarah, Manfaat & Tahapanya,” 8 Mei 2023. https://www.sekawanmedia.co.id/blog/metode-waterfall/

Published
2023-04-30