Web GIS Based Benthic Habitat Mapping Update Supports Smart Island Lemukutan
Abstract
Benthic habitats are important for the quality of life and global climate. Systematic and efficient information is important for the monitoring, mapping, and recording of aquatic bottom habitats, thus providing a habitat database. In the last decade, object-based image analysis (OBIA) has been accepted as an effective method for extracting and classifying information from high spatial resolution satellite imagery. Our study's goal is to use WebGIS to combine coral reef monitoring data from Lemukutan Island and find out how much coral cover there is on the island using the smart island WebGIS. This study took place from August 6th to August 13th, 2024, and used a total of 1097 field points to show where all the benthic habitats and Sentinel 2A image data sources were located. The research results obtained the extent of shallow water benthic habitat classification with different variations in each habitat class. The Rock Class covers an area of 41,940 ha, the mixed class 2,409 ha, the coral class 130,340 ha, the dead coral class 49,249 ha, the macroalgae class 2,840 ha, and the sand class 12,140 ha. The overall accuracy (OA) results for the waters of Lemukutan Island obtained the highest value, namely 89.5833%, using the SVM algorithm. Regular monitoring of coral reefs can help update Lemukutan Island Smart Island data to become a catalyst in realizing a smart island ecosystem in West Kalimantan Province by presenting benthic habitat maps through web GIS services and realizing technology development for coastal areas and small islands.
Downloads
References
Alifatri L.O., Prayudha B., Anggraini K. 2022. Benthic Habitat Classification Based on Sentinel-2 Imagery in the Kei Islands, Southeast Maluku. JIPI, 27 (3): 372−384.
Congalton RG, Green K. 2009. Assesing the Accuracy of Remotely Sensed Data Principles and Practices (Second edition). Boca Raton: CRC Press.
Gros C., Jansen J., Untiedt C., Pearman, T.R.R., Downey R., Barnes, D.K.A., Bowden, D. A., Welsford, D.C., Hill, N.A. 2023. Identifying vulnerable marine ecosystems: an image based vulnerability index for the Southern Ocean seafloor. ICES Journal of Marine Science, (0) 1–15. DOI: 10.1093/icesjms/fsad021.
Hartoni., Siregar, V.P., Wouthuyzen S., Agus S.B. 2022. Object based classification of benthic habitat using Sentinel 2 imagery by applying with support vector machine and random forest algorithms in shallow waters of Kepulauan Seribu, Indonesia. B IOD I V E R S I T A S 23 (1): 514-520.
Jeong, J.S., L.G. Moruno, J.H. Blanco. 2011. Webbased interoperability system: A collaborative method to integrate rural buildings with their surroundings. Proceedings Real Corp 2011.
Lazuardi W & Wicaksono P. 2021. Assessment of Coral Reef Life-Form Classification Scheme using Multiresolution Images on Parang Island, Indonesia. Geosfera Indonesia 6 (3): 377-397
Lima K., Pinto, J., Ferreira, V., Ferreira, B., Diegues, A., Ribeiro, M., de Sousa, J. 2019. Comprehensive Habitat Mapping of a Littoral Marine Park. IEEE OCEANS. 1–6. doi:10.1109/oceanse.2019.8867074.
Lubis, M.Z., Anurogo, W., Gustin, O., Andi, Hanafi, A., Timbang, D., Rizki, F., Saragih, D.A., Kartini, I.I., Panjaitan, H. C., Yanti, M. T Taki, H.M. 2017. Interactive modelling of buildings in Google Earth and GIS: A 3D tool for Urban Planning (Tunjuk Island, Indonesia). JAGI (1) 2 : 44-48
Mastu, L. O. K., Nababan, B., Panjaitan, J.P. 2018. Object-Based Benthic Habitat Mapping Using Sentinel-2 Imagery in the Waters of Wangi-Wangi Island, Wakatobi Regency. Journal of Tropical Marine Science and Technology, 10(2), 381–396. https://doi.org/10.29244/jitkt.v10i2.21039.
Mohamed, H., K. Nadaoka, & T. Nakamura. 2020. Towards Benthic Habitat 3D Mapping Using Machine Learning Algortihms and Structures from Motion Photogrammetry. Remote Sensing, 12(1): 127-143. https://doi.org/10.3390/rs12010127.
Munawaroh, Rudiastuti A.W., Dewi R.S., Ramadhani Y.H., Rahadiati A., Sutrisno D., Ambarwulan W., Pujawati I., Suryanegara E., Wijaya S.W., Hartini. S. 2021. Benthic Habitat Mapping using Sentinel 2A: A preliminary Study in Image Classification Approach in An Absence of Training Data. IOP Conf. Ser.: Earth Environ. Sci. 750 012029.
Nababan, B., L.O.K. Mastu, N.H. Idris, & J.P. Panjaitan. 2021. Shallow-water benthic habitat mapping using drone with object based image analyses. Remote Sensing, 13(21): 4452-4475. https://doi.org/10.3390/rs13214452.
Roelfsema C, Kovacs E., Ortiz J.C., Wolff N.H., Callaghan D., Wetle M., Phinn S. 2018. Coral reef habitat mapping: A combination of basedimage analysis and ecological modelling. Remote Sens Environ 208: 27-41. DOI: 10.1016/j.rse.2018.02.005
Subarno, T., Siregar, V.P., S.B. Agus. 2018. Integration of Obia and BTM for Mapping the Complexity of Coral Reef Habitats in the Waters of Harapan-Kelapa Island, Seribu Islands. Coastal And Ocean Journal, 1(13): 11-22.
Sutrisno, D., Sugara A., Darmawan M. The Assessment of Coral Reefs Mapping Methodology: An Integrated Method Approach. IOP Conf. Ser 750.: Earth Environ. Sci.
Taki, H.M., Lubis, M.S. 2017. GIS Modeling accessibility of community facilities: A Study Case of Depok City, Indonesia. JAGI (1) 2: 36-43
Wicaksono P, Aryaguna P.A., Lazuardi W. 2019. Benthic habitat mapping model and cross validation using machine-learning classification algorithms. Remote Sens 11: 1279. DOI: 10.3390/rs11111279.
Wölfl, A.-C., Snaith, H., Amirebrahimi, S., Devey, C.W., Dorschel, B., Ferrini, V., et al., 2019. Seafloor mapping – the challenge of a truly Global Ocean bathymetry. Front. Mar. Sci. 6.
Yasir Haya, L.O.M and Fujii, M. 2019. Assessing economic values of coral reefs in the Pangkajene and Kepulauan Regency, Spermonde Archipelago, Indonesia. Journal of coastal conservation, 23(3), 699-711.
Zibar Z., Saputra R., Raynaldo A., Supriyatno, Prasetyo B.A., Risko., Hendrawan. 2023. Smart Island Lemukutan Through WebGIS Based Benthic Habitat Data Collection. Journal of Applied Geospatial Information 7 (2): 891-897.
Zibar, Z., I.W. Nurjaya, S. Saputra, Alimuddin, dan F. Gustian. 2022. ROFI Zone (Region of Freshwater Influence) and Its Impact on Total Dissolved Solids in the Coastal District of Sukadana Kayong Utara. Journal of Applied Geospatial Information. 6 (2): 652- 657.
Copyright (c) 2025 Journal of Applied Geospatial Information
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JAGI are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.