Land Surface Temperature and its Relationship to Population Density

  • Mita Apriana Department of Environment and Forestry, Riau Island Province, Dompak Island, Tanjungpinang, Kepulauan Riau
  • Erliza Syahrani Diponegoro University, Semarang, Indonesia Tembalang, Semarang, Jawa Tengah 50239
Keywords: SUHI, LST, population density, Tanjungpinang

Abstract

Population density due to urbanization contributes to the SUHI phenomenon and urban climate change. Understanding the SUHI phenomenon that brings enormous negative impacts to the environment and human life, Land Surface Temperature (LST) assessment is essential for creating a feasible and livable city. By utilizing the data of 1999 and 2018, this study aims to assess the LST value and its relationship to population density in Tanjungpinang city over two decades. As an island, Tanjungpinang has a vulnerability to SUHI and the climate change phenomenon. This study applied GIS and remote sensing models based on the mathematical formula of digital remote sensing images to calculate the LST value, and the relationship between LST and population density was examined using correlation analyses with Microsoft Excel. The results showed that Tanjungpinang city had increased 3.5oC in LST and 94.80% in density population over two decades. SUHI phenomenon has occurred during this period. It also indicated that there was a significant relationship between population density and LST. The LST spatial pattern spread from west to east of Tanjungpinang city was in line with the population density distribution pattern. The area with the highest percentage of population density addition and experienced the highest LST was Tanjungpinang Barat District. This study considers local governments to create effective population control and adaptive planning strategies for SUHI phenomenon mitigation.

Downloads

Download data is not yet available.

References

Ali, J.M., Marsh, S.H., Smith, M.J., 2017. A comparison between London and Baghdad surface urban heat islands and possible engineering mitigation solutions. Sustain. Cities Soc. 29, 159–168. https://doi.org/10.1016/j.scs.2016.12.010

Ardiansyah, A.N., 2015. Perspektif Geografi Dalam Memahami Konteks Perubahan Iklim. SOSIO Didakt. Soc. Sci. Educ. J. 2, 67–75. https://doi.org/10.15408/sd.v2i1.1351

Bhargava, A., Lakmini, S., Bhargava, S., 2017. Urban Heat Island Effect: It’s Relevance in Urban Planning. J. Biodivers. Endanger. Species 05, 1–4. https://doi.org/10.4172/2332-2543.1000187

Chen, L., Jiang, R., Xiang, W.N., 2016. Surface heat island in Shanghai and its relationship with urban development from 1989 to 2013. Adv. Meteorol. 2016. https://doi.org/10.1155/2016/9782686

Darlina, S., Sasmito, B., Bambang, Y., 2018. Analisis Fenomena Urban Heat Island Serta Mitigasinya (Studi Kasus : Kota Semarang). J. Geod. Undip 7, 77–87.

Fawzi, N.I., 2017. Measuring Urban Heat Island using Remote Sensing , Case of Yogyakarta City. Maj. Ilm. Globe 19, 195–206.

Handayani, W., Rudiarto, I., 2011. Dinamika Persebaran Penduduk Jawa Tengah: Perumusan Kebijakan Perwilayahan Dengan Metode Kernel Density. Univ. Diponegoro.

Hulley, G., Shivers, S., Wetherley, E., Cudd, R., 2019. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: A case study for Los Angeles County, California. Remote Sens. 11, 6–8. https://doi.org/10.3390/rs11182136

Imhoff, M.L., Zhang, P., Wolfe, R.E., Bounoua, L., 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 114, 504–513. https://doi.org/10.1016/j.rse.2009.10.008

Kabak, M., Erbaş, M., Çetinkaya, C., Özceylan, E., 2018. A GIS-based MCDM approach for the evaluation of bike-share stations. J. Clean. Prod. 201, 49–60. https://doi.org/10.1016/j.jclepro.2018.08.033

Knox, P., 2009. Urbanization, in: Kitchin, R., Thrift, N.B.T.-I.E. of H.G. (Eds.), . Elsevier, Oxford, pp. 112–118. https://doi.org/https://doi.org/10.1016/B978-008044910-4.01108-1

Lailani, 2017. Kepadatan Penduduk, Masalah Klasik Indonesia yang Tak Berkesudahan [WWW Document]. Kompasiana. URL https://www.kompasiana.com/ (accessed 1.3.20).

Lee, K., Kim, Y., Sung, H.C., Ryu, J., Jeon, S.W., 2020. Trend Analysis of Urban Heat Island Intensity According to Urban Area Change in Asian Mega Cities.

Li, W., Cao, Q., Lang, K., Wu, J., 2017. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature. Sci. Total Environ. 586, 457–465. https://doi.org/10.1016/j.scitotenv.2017.01.191

Li, X., Zhou, Y., Asrar, G.R., Imhoff, M., Li, Xuecao, 2017. Science of the Total Environment The surface urban heat island response to urban expansion : A panel analysis for the conterminous United States. Sci. Total Environ. 605–606, 426–435. https://doi.org/10.1016/j.scitotenv.2017.06.229

Li, Y.Y., Zhang, H., Kainz, W., 2012. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 19, 127–138. https://doi.org/10.1016/j.jag.2012.05.001

M. Elsayed, I.S., 2012. Effects of Population Density and Land Management on the Intensity of Urban Heat Islands: A Case Study on the City of Kuala Lumpur, Malaysia. Appl. Geogr. Inf. Syst. https://doi.org/10.5772/47943

Mukmin, S.A., Wijaya, A.P., Sukmono, A., 2016. Analisis Pengaruh Perubahan Tutupan Lahan Terhadap Distribusi Suhu Permukaan Dan Keterkaitannya Dengan Fenomena Urban Heat Island. J. Geod. Undip 5, 224–233.

Ningrum, W., Narulita, I., 2018. Deteksi Perubahan Suhu Permukaan Menggunakan Data Satelit Landsat Multi-Waktu Studi Kasus Cekungan Bandung. J. Teknol. Lingkung. 19, 145. https://doi.org/10.29122/jtl.v19i2.2250

Nurwanda, A., Honjo, T., 2020. The prediction of city expansion and land surface temperature in Bogor City, Indonesia. Sustain. Cities Soc. 52, 101772. https://doi.org/10.1016/j.scs.2019.101772

Rahman, M.M., 2017. Do population density, economic growth, energy use and exports adversely affect environmental quality in Asian populous countries? Renew. Sustain. Energy Rev. 77, 506–514. https://doi.org/10.1016/j.rser.2017.04.041

Ramírez-Aguilar, E.A., Lucas Souza, L.C., 2019. Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia. Urban Clim. 29, 100497. https://doi.org/10.1016/j.uclim.2019.100497

Sejati, A.W., Buchori, I., Rudiarto, I., 2019. The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustain. Cities Soc. 46, 101432. https://doi.org/10.1016/j.scs.2019.101432

Siregar, D., Kusumah, B., Ardah, V., 2019. Analisis variabilitas curah hujan dan suhu udara di Tanjungpinang. J. Mater. dan Energi Indones. 9, 53–60.

Utomo, A., Suprayogi, A., Sasmita, B., 2017. ANALISIS HUBUNGAN VARIASI LAND SURFACE TEMPERATURE DENGAN KELAS TUTUPAN LAHAN MENGGUNAKAN DATA CITRA SATELIT LANDSAT (Studi Kasus : Kabupaten Pati). J. Geod. Undip 6, 71–80.

Veron, S., Mouchet, M., Govaerts, R., Haevermans, T., Pellens, R., 2019. Vulnerability to climate change of islands worldwide and its impact on the tree of life. Sci. Rep. 9, 1–14. https://doi.org/10.1038/s41598-019-51107-x

Wicahyani, S., Sasongko, S., Izzati, M., 2014. Pulau Bahang Kota (Urban Heat Island) di Kota Yogyakarta dan Daerah Sekitarnya Hasil Interpretasi Citra Landsat Oli- Tirs Tahun 2013. J. Geogr. 11, 196–205.

Zhou, B., Rybski, D., Kropp, J.P., 2017. The role of city size and urban form in the surface urban heat island. Sci. Rep. 7, 1–9. https://doi.org/10.1038/s41598-017-04242-2

Published
2022-02-20