Tidal Correction Effects Analysis on Shoreline Mapping in Jepara Regency

  • Arief Wicaksono Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
  • Pramaditya Wicaksono Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
  • Nurul Khakhim Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
  • Nur Mohammad Farda Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
  • Muh Aris Marfai Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
Keywords: tidal correction, shoreline, Planetscope, Landsat 8 OLI, Jepara

Abstract

The existence of high-spatial resolution imagery that are now available free by Planet Labs opens up opportunities in detailed scale mapping research, both as basic data and as reference data for geometry accuracy assessment. However, the use of several satellite sensors types with different recording times is the biggest obstacle in the use of high spatial resolution imagery as reference data because the shoreline instantaneous imaging at the data acquisition time does not consider the spatial and temporal variability of the shoreline boundaries. The purpose of this study was to analyze the effect of tidal correction on shoreline mapping in Jepara Regency using Landsat 8 OLI imagery in 2018.
The effect of tidal correction analysis is done by comparing the position of the shoreline corrected by tides with the shoreline that is not corrected for tides. The influence of tidal correction is marked by differences in the position of the two shorelines. Shoreline shift calculation when there is a difference in tidal conditions between the test shoreline and the reference shoreline is carried out using the theory of right triangle (also called as one-line shift method).
Based on the analysis of tidal correction effects, it is known that the shift in shoreline position after tidal correction varies from 0.21 m to 1.8 m, the value does not exceed one pixel of the PlanetScope image (3 m) so that tidal correction does not needs to be done because the effect is insignificant and undetectable on PlanetScope imagery.

Keywords: tidal correction, shoreline, Planetscope, Landsat 8 OLI, Jepara

References

Abidin, H.Z., 2000. Penentuan Posisi dengan GPS dan Aplikasinya. Pradnya Paramita, Jakarta.

Bachrodin, I., 2012. Penggunaan citra landsat multi-temporal untuk kajian perubahan garis pantai di Jawa (thesis).

Boak, E.H., & Turner, I.L., 2005. Shoreline Definition and Detection: A Review. Journal of Coastal Research, 21(4), 688-703.

Dulbahri., 1983. Aplikasi citra landsat skala 1:250.000 untuk studi perubahan garis pantai di daerah Jawa Tengah dan Jawa Timur (rep.). aplikasi citra landsat skala 1:250.000 untuk studi perubahan garis pantai di daerah Jawa Tengah dan Jawa Timur.

Elfatma, O., 2017. Sistem informasi geografi dan penginderaan jauh untuk studi pesisir: perubahan garis pantai multi-proxy di Kepesisiran DIY dan prediksi garis pantai tahun 2026 (thesis).

Ji, L., Geng, X., Sun, K., Zhao, Y., & Gong, P., 2015. Target Detection Method for Water Mapping Using Landsat 8 OLI/TIRS Imagery. Water, 7(2), 794-817.

Kasim, F. 2011. Koreksi Pasang Surut dalam Pemetaan Perubahan Garis Pantai Menggunakan Data Inderaja dan SIG. Jurnal Ilmiah Agrosains Tropis 6, 180-188.

Kelly, J.T., & Gontz, A.M. 2018. Using GPS-surveyed Intertidal Zones to Determine The Validity of Shorelines Automatically Mapped by Landsat Water Indices. International Journal of Applied Earth Observation and Geoinformation, 65, 92-104.

Li, W., & Gong, P., 2016. Continuous Monitoring of Shoreline Dynamics in Western Florida with A 30-year Time Series of Landsat Imagery. Remote Sensing of Environment, 179, 196-209.

Liu, Y., Wang, X., Ling, F., Xu, S., & Wang, C., 2017. Analysis of Shoreline Extraction from Landsat 8 OLI Imagery. Water, 9(11), 1-26.

Marfai, M.A., & Permana, K., 2014. Erosi dan Sedimentasi Kawasan Pesisir Jepara. in Sunarto, Marfai, M.A., & Setiawan, M.A., Geomorfologi dan Dinamika Pesisir Jepara (pp. 39-76). Gadjah Mada University Press, Yogyakarta.

Pemerintah Kabupaten Jepara., 2012. Rencana Pembangunan Jangka Menengah Daerah Kabupaten Jepara Tahun 2012 - 2017. Pemerintah Kabupaten Jepara, Jepara.

Planet Labs., 2018. Planet Imagery Product Specifications.Planet Labs, California.

Rodriguez, E., 2005. A Global Assessment of the SRTM Accuracy. in National Geospatial-Intelligence Agency., The Shuttle Radar Topography Mission: Data Validation and Application (p. 12). National Geospatial-Intelligence Agency, Virginia.

Sarp, G., & Ozcelik, M., 2017. Water Body Extraction and Change Detection Using Time Series: A Case Study of Lake Burdur, Turkey. Journal of Taibah University for Science, 11, 381-391.

Sinaga, T.P., Susiati, H., 2007. Studi Pemodelan Perubahan Garis Pantai di Sekitar Perairan Tapak PLTN Semenanjung Muria. Jurnal Pengembangan Energi Nuklir, 9(2), 1-10.

Sunarto., 2004. Perubahan fenomena geomorfik daerah kepesisiran di sekeliling Gunungapi Muria Jawa Tengah: kajian paleogeomorfologi (dissertation).

Triatmodjo, B., 2008. Teknik Pantai. Beta Offset, Yogyakarta.

Tucker, C.J., Grant, D.M., & Dykstra, J.D., 2004. NASA's Global Orthorectified Landsat Data Set. Photogrammetric Engineering and Remote Sensing, 70(3), 313-322.

Undang-Undang Republik Indonesia Nomor 23 Tahun 2014 tentang Pemerintah Daerah.

Undang-Undang Republik Indonesia Nomor 4 Tahun 2011 tentang Informasi Geospasial.

Yang, Y., Liu, Y., Zhou, M., Zhang, S., Zhan, W., Sun, C., & Duan, Y., 2015. Landsat 8 OLI Image Based Terrestrial Water Extraction from Heterogeneous Backgrounds Using A Reflectance Homogenization Approach. Remote Sensing of Environment, 171, 14-32.
Published
2018-12-18