Landslide Intensity and Potential Based on Geomorphology and Their Relationship to the Stadia Level of The Karanggayam River, Kebumen Regency, Central Java Province, Indonesia

  • Nofrohu Retongga Department of Mining Engineering, Faculty of Environmental and Mineral Technology, Sumbawa University of Technology Jln. Raya Olat Maras, Batu Alang, Moyo Hulu District, Sumbawa Regency, West Nusa Tenggara, Indonesia
  • Muhammad Haikal Razi Department of Geological Engineering, Faculty of Engineering, Gajah Mada University Bulaksumur, Caturtunggal, Depok District, Sleman Regency, Yogyakarta Special Region, Indonesia
  • Sayidatina Hayatuzzahra Department of Mining Engineering, Faculty of Environmental and Mineral Technology, Sumbawa University of Technology Jln. Raya Olat Maras, Batu Alang, Moyo Hulu District, Sumbawa Regency, West Nusa Tenggara, Indonesia
  • Aghib Dirgantara Department of Mining Engineering, Faculty of Environmental and Mineral Technology, Sumbawa University of Technology Jln. Raya Olat Maras, Batu Alang, Moyo Hulu District, Sumbawa Regency, West Nusa Tenggara, Indonesia
  • Samsun Samsun Department of Mining Engineering, Faculty of Environmental and Mineral Technology, Sumbawa University of Technology Jln. Raya Olat Maras, Batu Alang, Moyo Hulu District, Sumbawa Regency, West Nusa Tenggara, Indonesia
  • M Haris Department of Mining Engineering, Faculty of Environmental and Mineral Technology, Sumbawa University of Technology Jln. Raya Olat Maras, Batu Alang, Moyo Hulu District, Sumbawa Regency, West Nusa Tenggara, Indonesia
Keywords: Landslide, Geomorphology, Stadia Level River, Karanggayam River

Abstract

Landslides are disasters, with a high incidence in the Kebumen Regency area. The Kebumen Regency Regional Disaster Management Agency (BPBD) recorded that from 2011 to 2020, there were 1,335 disaster events, 477 events (35.7%) were landslides, and most landslides occurred in Karanggayam District with a total of 43 disaster events, which is the number one landslide incident in Kebumen Regency. Landslides also occurred at several points along the Karanggayam River. The research method consists of three stages: a literature study, surface geological mapping, and field data processing. The strength and potential of landslides are connected to geomorphological conditions, which include morphology, morphogenesis, and morphoassociation. This is shown by field research results, geomorphological data analysis, and Karanggayam River stage data. The mature river stage level in the study area affects the strength and possibility of landslides caused by lateral erosion on the outer bend slopes of the river. These slopes are steep, have thick soil, less resistant rock types, and few to moderate plants.

Downloads

Download data is not yet available.

References

Badan Penanggulangan Bencana Daerah Kabupaten Kebumen. (2021). Tentang Rekapan Bencana di Kabupaten Kebumen. Kebumen: BPBD

Bartelletti, C., Giannecchini, R., D’Amato Avanzi, G., Galanti, Y., Mazzali, A., 2017. The influence of geological–morphological and land use settings on shallow landslides in the Pogliaschina T. basin (northern Apennines, Italy). J. Maps 13, 142–152.

Dzakiya, N., Laksmana, R.B., Hidayah, R.A., 2023. Identifying Probable Slip Surface in Wanurejo, Borobudur District, By Subsurface Analysis Utilizing the Dipole-Dipole Configuration of Resistivity Method. J. Appl. Geospatial Inf. 7, 739–746.

Indratmoko, S., Harmantyo, D., Kusratmoko, E., 2017. Variabilitas curah hujan di Kabupaten Kebumen. J. Geogr. Trop. Environ. 1.

Karnawati, D., 2005. Bencana alam gerakan massa tanah di Indonesia dan upaya penanggulangannya. Jur. Tek. Geol. Fak. Tek. Univ. Gadjah Mada, Yogyakarta.

Lestari, E., 2017. Sistem Drainase Aliran Bawah Tanah Untuk Daerah Rawan Longsor (Studi Kasus Sub DAS Sungai Cikapundung, Bandung), in: Forum Mekanika. pp. 1–7.

Lobeck, A.K., 1939. Geomorphology, an introduction to the study of landscapes. McGraw-Hill Book Company, inc.,.

Nagarajan, R., Roy, A., Vinod Kumar, R., Mukherjee, A., Khire, M. V, 2000. Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull. Eng. Geol. Environ. 58, 275–287.

Priyono, K.D., Sartohadi, J., 2011. Tipologi Pedogeomorfik Longsorlahan di Pegunungan Menoreh Kabupaten Kulonprogo Daerah Istimewa Yogyakarta.

Regmi, A.D., Yoshida, K., Dhital, M.R., Devkota, K., 2013. Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides 10, 1–13.

Retongga, N., 2023. Analisis Risiko Bencana Longsor Dan Banjir Berbasis Pola Pengaliran Dan Geomorfologi Di Daerah Karanggayam Kabupaten Kebumen Provinsi Jawa Tengah. Tesis. Universitas Pembangunan Nasional "Veteran" Yogyakarta.

Sadisun, I.A., 2005. Usaha Pemahaman Terhadap Stabilitas Lereng dan Longsoran sebagai Langkah Awal dalam Mitigasi Bencana Longsor (Workshop Penanganan Bencana Gerakan Tanah). Bandung Dep. Geoligi Inst. Teknol. Bandung.

Saito, H., Uchiyama, S., Teshirogi, K., 2022. Rapid vegetation recovery at landslide scars detected by multitemporal high-resolution satellite imagery at Aso volcano, Japan. Geomorphology 398, 107989.

Sartohadi, J., 2008. The Landslide Distribution in Loano Sub-District, Purworejo District, Central Java Province, Indonesia.

Sunimbar, S., Angin, I.S., 2021. Analisis Geomorfologi Kejadian Longsor Di Kecamatan Wolotolo Kabupaten Ende. J. Geogr. 17, 14–22.

Van Beek, L.P.H., Van Asch, T.W.J., 2004. Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Nat. Hazards 31, 289–304.

Van Westen, C.J., Castellanos, E., Kuriakose, S.L., 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 102, 112–131.

Van Zuidam, R.A., 1983. Guide to geomorphologic interpretation and mapping, section of geology and geomorphology. Copyr. Reserv. ITC Finschede Ned.

Wahyudi, D.R., Sumaryono, S., Sukiyah, E., Muslim, D., Darana, A.R., 2015. Kontrol Morfotektonik Terhadap Gerakan Tanah di Daerah Malalak, Sumatra Barat. J. Lingkung. dan Bencana Geol. 6, 229–240.

Yuniawan, R.A., Rifa’i, A., Faris, F., Subiyantoro, A., Satyaningsih, R., Hidayah, A.N., Hidayat, R., Mushthofa, A., Ridwan, B.W., Priangga, E., 2022. Revised rainfall threshold in the Indonesian landslide early warning system. Geosciences 12, 129.

Zakaria, Z., 2010. Model Starlet, suatu Usulan untuk Mitigasi Bencana Longsor dengan Pendekatan Genetika Wilayah (Studi Kasus: Longsoran Citatah, Padalarang, Jawa). J. Geol. Indones. 5, 93–112.

Zhang, J., Qiu, H., Tang, B., Yang, D., Liu, Y., Liu, Z., Ye, B., Zhou, W., Zhu, Y., 2022. Accelerating effect of vegetation on the instability of rainfall-induced shallow landslides. Remote Sens. 14, 5743.

Published
2024-05-29