Machine Learning-Enhanced Geographically Weighted Regression for Spatial Evaluation of Human Development Index across Western Indonesia

  • Gustian Angga Firmansyah Study Program in Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Jl. Imam Bonjol No.207, Pendrikan Kidul, Kec. Semarang Tengah, Kota Semarang, Jawa Tengah 50131, Indonesia.
  • Junta Zeniarja Study Program in Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Jl. Imam Bonjol No.207, Pendrikan Kidul, Kec. Semarang Tengah, Kota Semarang, Jawa Tengah 50131, Indonesia.
  • Harun Al Azies Study Program in Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Jl. Imam Bonjol No.207, Pendrikan Kidul, Kec. Semarang Tengah, Kota Semarang, Jawa Tengah 50131, Indonesia; and Research Center for Materials Informatics, Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
  • Sri winarno Study Program in Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Jl. Imam Bonjol No.207, Pendrikan Kidul, Kec. Semarang Tengah, Kota Semarang, Jawa Tengah 50131, Indonesia
  • Syuhra Putri Ganiswari Study Program in Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Jl. Imam Bonjol No.207, Pendrikan Kidul, Kec. Semarang Tengah, Kota Semarang, Jawa Tengah 50131, Indonesia
Keywords: Human Development Index, Geographically Weighted Regression, Machine Learning, Western Indonesia Region, Spatial, Regression

Abstract

The HDI (Human Development Index) is one of the important components to measure the level of success in efforts to improve the quality of human life. The human development index is built with three dimensions, namely the longevity and health dimension, the knowledge dimension and the decent standard of living dimension. The longevity and health dimension is measured using Life expectancy at birth. The knowledge dimension is measured using expected years of schooling and average years of schooling. Meanwhile, the decent standard of living dimension is measured using Adjusted per capita expenditure. This study aims to find factors that influence HDI (Human Development Index) in Western Indonesia Region using machine learning models. The results obtained are that HDI is influenced by average years of schooling, expected years of schooling, Life expectancy at birth, and Adjusted per capita expenditure which are sorted from the most significantly influential. The model used in this study is GWR (Geographically Weighted Regression) with evaluation results including, AIC of 215.3162, AICc of 226.5107, and the accuracy level in the form of R-square of 99.38% which means this model is good to use.

Downloads

Download data is not yet available.

References

Ade Onny Siagian. (2022). Struktur Peramalan System Multi-Model untuk pemodelan matematika pada Forecast Indeks Pembangunan Manusia Provinsi Bali. DIAJAR: Jurnal Pendidikan Dan Pembelajaran, 1(1), 86–94. https://doi.org/10.54259/diajar.v1i1.204

Al Azies, H., & Dewi, V. M. (2021). Factors Affecting Life Expectancy in East Java: Predictions with A Bayesian Model Averaging Approach. Jurnal Perencanaan Pembangunan: The Indonesian Journal of Development Planning, 5(2), 283–

https://doi.org/10.36574/jpp.v5i2.214

Amalia, E., & Sari, L. K. (2019). Analisis Spasial Untuk Mengidentifikasi Tingkat Pengangguran Terbuka Berdasarkan Kabupaten/Kota Di Pulau Jawa Tahun 2017. Indonesian Journal of Statistics and Its Applications, 3(3), 202–215. https://doi.org/10.29244/ijsa.v3i3.240

Amarrohman, F. J., Wahyuddin, Y., & Patricia, E. (2023). Analysis of Land Value in the Area Surrounding the Central Business District (CBD) of Simpang Lima, Semarang City Using Geographically Weighted Regression (GWR). JOURNAL OF APPLIED GEOSPATIAL INFORMATION, 7(2), 919.

https://doi.org/https://doi.org/10.30871/jagi.v7i 2.6361

Azies, H. Al. (2022). Prosiding Seminar Ekonomi Nasional. Pusaka Jateng, 49–62.

Badan Pusat Statistik Indonesia. (2022, November 15). Konsep Indeks Pembangunan Manusia (IPM).

https://www.bps.go.id/subject/26/indeks- pembangunan-manusia.html

Daulay, S. H., & Simamora, E. (2023). Pemodelan Faktor-Faktor Penyebab Kemiskinan Di Provinsi Sumatera Utara Menggunakan Metode Geographically Weighted Regression (GWR). Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam (JURRIMIPA), 2(1).

Kopczewska, K. (2022). Spatial machine learning: new opportunities for regional science. The Annals of Regional Science, 68(3), 713–755. https://doi.org/10.1007/s00168-021-01101-x

Li, T., Cao, X., Qiu, M., & Li, Y. (2020). Exploring the spatial determinants of rural poverty in the interprovincial border areas of the loess plateau in China: A village-level analysis using geographically weighted regression. ISPRS International Journal of Geo-Information, 9(6). https://doi.org/10.3390/ijgi9060345

Littidej, P., Uttha, T., & Pumhirunroj, B. (2022). Spatial Predictive Modeling of the Burning of Sugarcane Plots in Northeast Thailand with Selection of Factor Sets Using a GWR Model and Machine Learning Based on an ANN-CA. Symmetry, 14(10), 1989.

https://doi.org/10.3390/sym14101989

Lutfiani, N., & Scolastika Mariani, dan. (2017). Pemodelan Geographically Weighted Regression (GWR) dengan Fungsi Pembobot Kernel Gaussian dan Bi-square. In UNNES Journal of Mathematics (Vol. 5, Issue 1). http://journal.unnes.ac.id/sju/index.php/ujmUJ M8

Mahara, D. O., & Fauzan, A. (2021). Impacts of Human Development Index and Percentage of Total Population on Poverty using OLS and GWR models in Central Java, Indonesia. EKSAKTA: Journal of Sciences and Data Analysis, 142–154.

https://doi.org/10.20885/EKSAKTA.vol2.iss2.a rt8

Marizal, M., & Atiqah, H. (2022). Pemodelan Indeks Pembangunan Manusia di Indonesia dengan Geographically Weighted Regression (GWR). Jurnal Sains Matematika Dan Statistika, 8(2), 133. https://doi.org/10.24014/jsms.v8i2.17886

Maulana, A., Meilawati, R., & Widiastuti, V. (2019). Pemodelan Indeks Pembangunan Manusia (IPM) Metode Baru Menurut Provinsi Tahun 2015 Menggunakan Geographically Weighted Regression (GWR). Indonesian Journal of Applied Statistics, 2(1), 21.

https://doi.org/10.13057/ijas.v2i1.26170

Nona, A. D. (2022). Kesetaraan Gender melalui Strategi Pengarusutamaan Gender di Lembaga Diklat P4TK TK dan PLB Bandung. Spektrum Analisis Kebijakan Pendidikan, 11(1), 46–63.

https://doi.org/10.21831/sakp.v11i1.17874

Nur Amiroh, N., & Avianto, D. (2023). Prediksi Indeks Pembangunan Manusia di Kabupaten Wonosobo Menggunakan Algoritma Backpropagation Human Development Index’s Prediction in Wonosobo District using Backpropagation Algorithm. Techno. Com, 22(2), 388–399.

Nuramaliyah, N., Saefuddin, A., & Aidi, M. N. (2019). The Best Global And Local Variables Of The Mixed Geographically And Temporally Weighted Regression Model. Indonesian Journal of Statistics and Its Applications, 3(3), 320–330.

https://doi.org/10.29244/ijsa.v3i3.564

Oshan, T. M., Smith, J. P., & Fotheringham, A. S. (2020). Targeting the spatial context of obesity determinants via multiscale geographically weighted regression. International Journal of

Health Geographics, 19(1), 11.

https://doi.org/10.1186/s12942-020-00204-6

Permai, S. D., Tanty, H., & Rahayu, A. (2016). Geographically weighted regression analysis for human development index. AIP Conference Proceedings, 1775, 030045.

https://doi.org/10.1063/1.4965165

Purwaningsih, T., & Noraprilia, K. (2018). Cervical cancer model in Indonesia using geographically weighted regression (GWR). AIP Conference Proceedings, 2026, 020087. https://doi.org/10.1063/1.5065047

Putri, F. E., Abapihi, B., & Ruslan, A. (2022). Pemodelan Indeks Pembangunan Manusia Di Indonesia Dengan Pendekatan Geographically Weighted Regression. Seminar Nasional Sains Dan Terapan VI, 6, 34–49. www.bps.go.id

Sukanto, S., Juanda, B., Fauzi, A., & Mulatsih, S. (2019). Analisis Spasial Kemiskinan Dengan Pendekatan Geographically Weighted Regression: Studi Kasus Kabupaten Pandeglang Dan Lebak. TATALOKA, 21(4), 669.

https://doi.org/10.14710/tataloka.21.4.669-677

Suryowati, K., Ranggo, M. O., Bekti, R. D., Sutanta, E., & Riswanto, E. (2021). Geographically Weighted Regression using Fixed and Adaptive Gaussian Kernel Weighting for Maternal Mortality Rate Analysis. Proceeding - ICERA 2021: 2021 3rd International Conference on Electronics Representation and Algorithm, 115–120.

https://doi.org/10.1109/ICERA53111.2021.953 8643

Tambunan, K., Siregar, R. A., Kabupaten, P., Serdang, D., & Tarigan, A. A. (2022). Konsep Indeks Pembangunan Manusia (Ipm) Dalam Al-Qur’an Perspektif Quraish Shihab. Human Falah, 9(2).

Tjodi, A. M., Rotinsulu, T. O., & Kawung, G. M. (2021). Pengaruh Pengeluaran Pemerintah Sektor Pendidikan, Sektor Kesehatan Dan Belanja Modal Terhadap Indeks Pembangunan Manusia Melalui Pertumbuhan Ekonomi (Studi Di Provinsi Sulawesi Utara). JURNAL PEMBANGUNAN EKONOMI DAN KEUANGAN DAERAH, 19(4), 27–44.

https://doi.org/https://doi.org/10.35794/jpekd.3 2762.19.4.2018

Wardhana, A., Kharisma, B., & Sulandari, D. S. (2021). Belanja Pemerintah dan Peningkatan Sumber Daya Manusia di Indonesia. Jurnal Ecodemica Jurnal Ekonomi Manajemen Dan Bisnis, 5(2), 139–151.

https://doi.org/10.31294/eco.v5i2.10168

Wu, C., Zhou, M., Liu, P., & Yang, M. (2021).

Analyzing COVID‐19 Using Multisource Data:

An Integrated Approach of Visualization, Spatial Regression, and Machine Learning. GeoHealth, 5(8).

https://doi.org/10.1029/2021GH000439

Published
2023-11-24