Analysis of Land Subsidence in Peatlands in the Awareness Area of Pekanbaru, Riau, Indonesia

  • Husnul Kausarian Geological Engineering Program, Universitas Islam Riau, Jl. Kaharuddin Nasution 113, Pekanbaru 28284, Indonesia
  • Windi Indra Sari Geological Engineering Program, Universitas Islam Riau, Jl. Kaharuddin Nasution 113, Pekanbaru 28284, Indonesia
  • Fitri Mairizki Geological Engineering Program, Universitas Islam Riau, Jl. Kaharuddin Nasution 113, Pekanbaru 28284, Indonesia
  • Batara Batara State Key Laboratory of Marine Geology and School of Ocean and Earth Science, Tongji University, Shanghai, China
  • Adi Suryadi Geological Engineering Program, Universitas Islam Riau, Jl. Kaharuddin Nasution 113, Pekanbaru 28284, Indonesia
Keywords: Geological Mapping, Characteristics, Peat Soil, Subsidence, Consolidation Test

Abstract

This study area is administratively located in Parit Indah District, Bukit Raya District, Pekanbaru City, Riau Province. Geographically, the research area is located at coordinates 0° 28' 30.92" N 101° 28' 9.45" E N 0° 27' 25.63" - 101° 29' 47.30" E. The aim of this study was to find out the effect of peat soil types on subsidence. The data collection method in this study was carried out using sieve analysis, water content analysis, specific gravity, subsidence analysis, and soil testing in the laboratory. The effect of peat soil on subsidence has a significant effect between the type of peat and subsidence, the higher the maturity level of the peat, the lower the level of subsidence on peat soil. Based on the study's results, the soil consolidation test with a depth of 75cm-3m had a soil settlement value of 0.467. It is recommended to do this to reduce the impact of subsidence in the land area such as the research area so that it does not have too much impact on the construction which is carried out by hardening the location using the vertical wick drain method, as well as for building foundations it can be done using chicken claw foundation.

Downloads

Download data is not yet available.

References

Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32(4), 269–277. https://doi.org/10.1016/0013-7952(92)90053-2

Basharat, M., Riaz, M. T., Jan, M. Q., Xu, C., & Riaz, S. (2021). A review of landslides related to the 2005 Kashmir Earthquake: Implication and future challenges. Natural Hazards, 108(1), 1–30. https://doi.org/10.1007/s11069-021-04688-8

CERRI, R. I., REIS, F. A. G. V., GRAMANI, M. F., GIORDANO, L. C., & ZAINE, J. E. (2017). Landslides Zonation Hazard: Relation between geological structures and landslides occurrence in hilly tropical regions of Brazil. Anais Da Academia Brasileira de Ciências, 89(4), 2609–2623. https://doi.org/10.1590/0001-3765201720170224

Clarke, M. C. G., Kartawa, W., Djunuddin, A., Suganda, E., & Bagdja, M. (1982). Geological Map of the Pekanbaru Quadrangle, Sumatera. Harahap Bhakti H., Syaiful B., Baharuddin, Suwarna N., Panggabean H., Simanjuntak TO (2003), Stratigraphic Lexicon of Indonesia,(Special).

Deng, Y., Cai, C., Xia, D., Ding, S., Chen, J., & Wang, T. (2017). Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China. Solid Earth, 8(2), 499–513. https://doi.org/10.5194/se-8-499-2017

Dikshit, A., Sarkar, R., Pradhan, B., Acharya, S., & Alamri, A. M. (2020). Spatial Landslide Risk Assessment at Phuentsholing, Bhutan. Geosciences, 10(4), 131. https://doi.org/10.3390/geosciences10040131

El Jazouli, A., Barakat, A., & Khellouk, R. (2019). GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, 6(1), 3. https://doi.org/10.1186/s40677-019-0119-7

He, K., Li, J., Li, B., Zhao, Z., Zhao, C., Gao, Y., & Liu, Z. (2022). The Pingdi landslide in Shuicheng, Guizhou, China: Instability process and initiation mechanism. Bulletin of Engineering Geology and the Environment, 81(4), 131. https://doi.org/10.1007/s10064-022-02596-0

Heidrick, T. L., & Aulia, K. (1993). A structural and tectonic model of the coastal plains block, Central Sumatra Basin, Indonesia.

Izumi, Y., Widodo, J., Kausarian, H., Demirci, S., Takahashi, A., Razi, P., Nasucha, M., Yang, H., & Tetuko S. S., J. (2019). Potential of soil moisture retrieval for tropical peatlands in Indonesia using ALOS-2 L-band full-polarimetric SAR data. International Journal of Remote Sensing, 40(15), 5938–5956. https://doi.org/10.1080/01431161.2019.1584927

Kausarian, H., Redyafry, Lady, Josaphat Tetuko Sri Sumantyo, Suryadi, A., & Muhammad Zainuddin Lubis. (2023). Structural Analysis of the Central Sumatra Basin Using Geological Mapping and Landsat 8 Oli/Tirs C2 L1 Data. Evergreen, 10(2), 792–804. https://doi.org/10.5109/6792830

Kausarian, H., Sri Sumantyo, J. T., Putra, D. B. eka, Suryadi, A., & Gevisioner, G. (2018). Image processing of alos palsar satellite data, small unmanned aerial vehicle (UAV), and field measurement of land deformation. International Journal of Advances in Intelligent Informatics, 4(2), 132. https://doi.org/10.26555/ijain.v4i2.221

Kausarian, H., Suryadi, A., Susilo, Batara, & Sumantyo, J. T. S. (2021). Flood Problem in Pekanbaru City Analysis Using GIS Approach. Journal of Physics: Conference Series, 1783(1), 012090. https://doi.org/10.1088/1742-6596/1783/1/012090

Kausarian, H., Trionaldi, E., Khalif Arrahman, T., Bagus eka putra, D., & Batara. (2020). Settlement and Capacity Analysis of Land Support Development on Flyover in Large City; Pekanbaru, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 5(2), 103–111. https://doi.org/10.25299/jgeet.2020.5.2.5048

Koesoemadinata, R. P., & Matasak, T. (1981). Stratigraphy and Sedimentation: Ombilin Basin, Central Sumatra (West Sumatra Province).

Lubis, M. Z., Anggraini, K., Kausarian, H., & Pujiyati, S. (2017). Review: Marine Seismic And Side-Scan Sonar Investigations For Seabed Identification With Sonar System. Journal of Geoscience, Engineering, Environment, and Technology, 2(2), 166. https://doi.org/10.24273/jgeet.2017.2.2.253

Lubis, M. Z., Anurogo, W., Kausarian, H., Surya, G., & Choanji, T. (2017). Sea Surface Temperature and Wind Velocity in Batam Waters Its Relation to Indian Ocean Dipole (IOD). Journal of Geoscience, Engineering, Environment, and Technology, 2(4), 255. https://doi.org/10.24273/jgeet.2017.2.4.778

Ruiz-Martínez, G., Rivillas-Ospina, G. D., Mariño-Tapia, I., & Posada-Vanegas, G. (2016). SANDY: A Matlab tool to estimate the sediment size distribution from a sieve analysis. Computers & Geosciences, 92, 104–116. https://doi.org/10.1016/j.cageo.2016.04.010

Ubani, C. E., Ani, G. O., & Womiloju, T. T. (2018). Permeability Estimation Model from Grain Size Sieve Analysis: Data of Onshore Central Niger Delta. European Journal of Engineering Research and Science, 3(12), 119–125. https://doi.org/10.24018/ejers.2018.3.12.503

Published
2023-10-05