Characteristics and Dispersion Model of Wastewater PT Kayu Lapis Indonesia, Kendal, Central Java

  • Rizqi Rizaldi Hidayat Department of Marine Science, Jenderal Soedirman University, Purwokerto, 53123, Indonesia
  • Irwan Harun Biosfer Saintek Indonesia, Tangerang Selatan, Banten, 15412, Indonesia
  • Eddiyanto Eddiyanto Department of Chemistry, Universitas Negeri Medan, Medan, 20221, Indonesia
  • Isnaini Prihatiningsih Department of Marine Science, Jenderal Soedirman University, Purwokerto, 53123, Indonesia
  • Ardiansyah Farabi Department of Marine Science, Jenderal Soedirman University, Purwokerto, 53123, Indonesia
Keywords: wastewater characteristics, hydrodynamics model, dispersion modeling, plywood industry

Abstract

PT. Kayu Lapis Indonesia (PT KLI) is a company engaged in the forestry sector, particularly in wood processing. Production activities at PT KLI produce wastewater that is treated and discharged into the sea, and then spreads following ocean currents. This study aimed to analyze the characteristics of wastewater produced by PT KLI and predict the distribution pattern of the waste. The characteristics of the wastewater and seawater were obtained through in situ measurements and sampling, which were analyzed in the laboratory. The distribution pattern of wastewater discharge was modeled using the pollutant model from the hydrodynamic model results around the water. The characteristics of the PT KLI wastewater were dominated by parameters such as pH, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), and total ammonia. The wastewater was processed in a Wastewater Treatment Plant (WWTP) until all the parameters met predetermined standards before being discharged into the ocean. The model results show that wastewater tends to move westward both at high tide in the west and east monsoons and at low tide in the west and east monsoons, with little movement to the east.

Downloads

Download data is not yet available.

References

Aljohani, N. S., Kavil, Y. N., Shanas, P. R., Al-Farawati, R. K., Shabbaj, I. I., Aljohani, N. H., Turki, A. J., & Salam, M. A. (2022). Environmental Impacts of Thermal and Brine Dispersion Using Hydrodynamic Modelling for Yanbu Desalination Plant, on the Eastern Coast of the Red Sea. Sustainability (Switzerland), 14(8). https://doi.org/10.3390/su14084389

Baawain, M., Choudri, B. S., Ahmed, M., & Purnama, A. (2015). Recent progress in desalination, environmental and marine outfall systems. Recent Progress in Desalination, Environmental and Marine Outfall Systems, 1–347. https://doi.org/10.1007/978-3-319-19123-2

Bellafiore, D., & Umgiesser, G. (2010). Hydrodynamic coastal processes in the North Adriatic investigated with a 3D finite element model. Ocean Dynamics, 60(2), 255–273. https://doi.org/10.1007/s10236-009-0254-x

Ben Hamza, S., Habli, S., Mahjoub Saïd, N., Bournot, H., & Le Palec, G. (2015). Simulation of pollutant dispersion of a free surface flow in coastal water. Ocean Engineering, 108, 81–97. https://doi.org/10.1016/j.oceaneng.2015.07.059

Campos, C. J. A., Morrisey, D. J., & Barter, P. (2022). Principles and Technical Application of Mixing Zones for Wastewater Discharges to Freshwater and Marine Environments. Water (Switzerland), 14(8). https://doi.org/10.3390/w14081201

Cheng, J., Han, J., Zheng, B., Wang, X., Yang, Z., & Zhang, X. (2021). Exploring the influence of water exchange on the distribution of polycyclic aromatic hydrocarbons in marine sediments by numerical calculation model. Journal of Hydrology, 603(PA), 126874. https://doi.org/10.1016/j.jhydrol.2021.126874

de Lima, A. de S., Khalid, A., Miesse, T. W., Cassalho, F., Ferreira, C., Scherer, M. E. G., & Bonetti, J. (2020). Hydrodynamic and waves response during storm surges on the southern brazilian coast: A hindcast study. Water (Switzerland), 12(12). https://doi.org/10.3390/w12123538

El Zrelli, R., Rabaoui, L., Ben Alaya, M., Daghbouj, N., Castet, S., Besson, P., Michel, S., Bejaoui, N., & Courjault-Radé, P. (2018). Seawater quality assessment and identification of pollution sources along the central coastal area of Gabes Gulf (SE Tunisia): Evidence of industrial impact and implications for marine environment protection. Marine Pollution Bulletin, 127(November 2017), 445–452. https://doi.org/10.1016/j.marpolbul.2017.12.012

Elenwo, E. I., & Akankali, J. A. (2015). The Effects of Marine Pollution on Nigerian Coastal Resources. Journal of Sustainable Development Studies, 8(1), 209–224.

Febrianto, T., Hestirianoto, T., & Agus, S. B. (2015). Pemetaan Batimetri Di Perairan Dangkal Pulau Tunda, Serang, Banten Menggunakan Singlebeam Echosounder Bathymetric Mapping in Shallow Water of Tunda Island, Serang, Banten Using Singlebeam Echosounder. Jurnal Teknologi Perikanan Dan Kelautan, 6(2), 139–147.

Gordon, A. L., Huber, B. A., Metzger, E. J., Susanto, R. D., Hurlburt, H. E., & Adi, T. R. (2012). South China Sea throughflow impact on the Indonesian throughflow. Geophysical Research Letters, 39(11), 1–7. https://doi.org/10.1029/2012GL052021

Gupta, S., Mittal, Y., Panja, R., Prajapati, K. B., & Yadav, A. K. (2021). Conventional wastewater treatment technologies. In Current Developments in Biotechnology and Bioengineering (pp. 47–75). Elsevier. https://doi.org/10.1016/B978-0-12-821009-3.00012-9

Harahap, S. (2011). Penggunaan Kitosan Dari Kulit Udang Dalam Menurunkan Kadar Total Suspended Solid (Tss) Pada Limbah Cair Industri Plywood. Jurnal Akuatika Indonesia, 2(2), 244829.

Hessner, K., & Bell, P. S. (2009). High resolution current & bathymetry determined by nautical X-Band radar in shallow waters. OCEANS ’09 IEEE Bremen: Balancing Technology with Future Needs. https://doi.org/10.1109/OCEANSE.2009.5278333

Inan, A. (2019). Modeling of hydrodynamics and dilution in coastalwaters. Water (Switzerland), 11(1). https://doi.org/10.3390/w11010083

Karamma, R., Pallu, M. S., Thaha, M. A., Hatta, M. P., & Ihsan, M. (2021). Spatial mapping of water mass structure in the estuary of Jeneberang river. IOP Conference Series: Earth and Environmental Science, 841(1). https://doi.org/10.1088/1755-1315/841/1/012023

Khoirunnisa, H., & Karima, S. (2019). The Condition of Significant Wave Height and Wind Velocity in Makassar Strait during 2017. Journal of Applied Geospatial Information, 3(1), 179–189. https://doi.org/10.30871/jagi.v3i1.999

Klauson, D., Klein, K., Kivi, A., Kattel, E., Viisimaa, M., Dulova, N., Velling, S., Trapido, M., & Tenno, T. (2015). Combined methods for the treatment of a typical hardwood soaking basin wastewater from plywood industry. International Journal of Environmental Science and Technology, 12(11), 3575–3586. https://doi.org/10.1007/s13762-015-0777-2

Lepesqueur, J., Hostache, R., Martínez-Carreras, N., Montargès-Pelletier, E., & Hissler, C. (2019). Sediment transport modelling in riverine environments: On the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary. Hydrology and Earth System Sciences, 23(9), 3901–3915. https://doi.org/10.5194/hess-23-3901-2019

Mahmudi, A., & Rani, S. (2012). Pengendalian Pencemaran Air Laut Akibat di Perairan Teluk Lampung. 0067, 1–10.

Ninh, B. D., Gil, N. C., & Baclayon, D. P. (2018). Performance efficiency evaluation of a modified laboratory-scale process for rubber wastewater treatment using moving bed biofilm reactor. Journal of Science, Engineering and Technology, 6, 112–126.

Noori, F., Zahedi, M. M., Bayati-Comitaki, A., & Ziyaadini, M. (2021). Study of the salinity and pH dilution pattern of discharged brine of the Konarak desalination plant into the Chabahar bay: a case study. Applied Water Science, 11(10), 1–8. https://doi.org/10.1007/s13201-021-01497-z

Risandi, J., Rijnsdorp, D. P., Hansen, J. E., & Lowe, R. J. (2020). Hydrodynamic modeling of a reef-fringed pocket beach using a phase-resolved non-hydrostatic model. Journal of Marine Science and Engineering, 8(11), 1–23. https://doi.org/10.3390/jmse8110877

Soedarmanto, H., & Setiawati, E. (2022). The Analysis of Plywood Industrial Wastewater Treatment in South Kalimantan. IOP Conference Series: Earth and Environmental Science, 950(1), 1–7. https://doi.org/10.1088/1755-1315/950/1/012045

Sreelekshmy, S. G., Miranda, M. T. P., & Rajesh, B. R. (2016). Acute toxicity of industrial effluent on the marine catfish Arius nenga ( Hamilton , 1822 ). International Journal of Fisheries and Aquatic Studies, 4(3), 215–219. https://sci-hub.do/https://www.fisheriesjournal.com/archives/2016/vol4issue3/PartC/4-2-64.pdf

Subari, D., & Setiawan, B. Y. B. (2012). Efektifitas Pengelolaan Limbah Cair pada Industri Kayu Lapis di Kalimantan Selatan. Buana Sains, 12(1), 99–108.

Sunny, N., Basheer, A., Johnson, A., Sreedhar, G. A., & Melwin, T. G. (2016). Treatment Of Effluent From Plywood Industry. International Research Journal of Engineering and Technology, 1115–1117. www.irjet.net

Utomo, S. W., Rahmadina, F., Wispriyono, B., Kusnoputranto, H., & Asyary, A. (2021). Metal Contents of Lake Fish in Area Close to Disposal of Industrial Waste. Journal of Environmental and Public Health, 2021. https://doi.org/10.1155/2021/6675374

Zhang, X., Li, D., Wang, X., Li, X., Cheng, J., & Zheng, B. (2021). Exploration of polycyclic aromatic hydrocarbon distribution in the sediments of marine environment by hydrodynamic simulation model. Marine Pollution Bulletin, 171(8), 112697. https://doi.org/10.1016/j.marpolbul.2021.112697

Published
2023-08-14