The Compatibility Study of Sentinel 1 Multitemporal Analysis For River-Flood Detection, Study Case: Bogowonto River
Abstract
Flooding is a common natural disaster in Purworejo District, which can be caused by the overflowing of the Bogowonto River. The use of multitemporal analysis with Synthetic Aperture Radar (SAR) images, such as Sentinel-1, has the potential to aid in flood inundation detection for disaster mitigation in the area. However, there has not been any research examining the compatibility of flood inundation detection using multitemporal Sentinel-1 images with the flood susceptibility characteristics of the Bogowonto River. This study aims to evaluate this using a SWOT analysis. The results show that multitemporal analysis using Sentinel-1 images is not suitable for detecting flood inundation in the Bogowonto River due to difficulties in finding the right acquisition time at the time of the flood event. The duration of floods in the Bogowonto River is approximately 1-2 days, while the earliest reacquisition time for Sentinel-1 images for this study is 12 days. Additionally, Sentinel-1 images using band C have limitations in detecting floods under vegetation.
Downloads
References
Baldassarre, G.D., Nardi, F., Annis, A., Odongo, V., Rusca, M., and Grimaldi, S. (2020). Brief Communication: Comparing Hydrological and Hydrogeomorphic Paradigms for Global Flood Hazard Mapping. Natural Hazards and Earth System Sciences, 20, 1415-1419.
Benito, G., and Hudson, P.F. (2010). Geomorphological Hazards and Disaster Prevention, eds. Irasema Alcantara-Ayala and Andrew S. Goudie. Cambridge University Press. tex
Binh, P.D., and Son, T.S. Monitoring Spatial-Temporal Dynamics of Small Lakes Based on SAR Sentinel-1 Observations: A Case Study Over Nui Coc Lake (Vietnam). Vietnam Journal of Earth Sciences. 1-17.
BPS. (2022). Kabupaten Purworejo Dalam Angka. BPS Kabupaten Purworejo.
Conde, F.C., and Munoz, M.D.M. (2019). Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case Study. Journal of Water MDPI, 2454: 1-25.
Dubey, A.K., Kumar, P., Chembolu, V., Dutta, S., Singh, R.P., and Rajawat, A.S. (2021). Flood Modeling of a Large Transboundary River Using WRF-Hydro and Microwave Remote Sensing. Journal of Hydrology, 126391: 1-18.
Ferro-Famil., and Pottier. (2016). Synthetic Aperture Radar Imaging, Microwave Remote Sensing of Land Surface. 1-65.
Hlavacova, I., Kacmarik, M., Lazecky, M., Struhar, J., and Rapant, P. (2021). Automatic Open Water Flood Detection From Sentinel-1 Multi-Temporal Imagery. Journal Water MDPI, 13,3392: 1-25.
Li, Y., Martinis, S., Plank, S., and Ludwig, R. (2018). An Automatic Change Detection Approach for Rapid Flood Mapping in Sentinel-1 SAR Data. International Journal Earth Obs Geoinformation. 123-135.
Lin, Li., Di, L., Yu,E.G., Kang, L., et al. (2016). A Review of Remote Sensing in Flood Assessment. Journal IEEE Xplore, 1-4.
Marsoedi, D.S., Widagdo, J.D., Suharta, N., Darul, SWP., Hardjowigeno, J.H., and Jordens, E.R. (1997). Pedoman Klasifikasi Landform. Laporan Teknis No. 5, Versi 3.0 LREP II, CSAR, Bogor.
Mason, D.C., Bates, P.D., Dall, J.T., and Amico. (2009). Calibration of Uncertain Flood Inundation Models Using Remotely Sensed Water Levels. Journal of Hydrology. 368, 224-236.
Mishra, S., Shrivastava, P., and Dhurvey, P. (2017). Change Detection Techniques in Remote Sensing: A Review. International Journal of Wireless and Mobile Communication for Industrial Systems, 4(1), 1-8.
Peraturan Pemerintah RI. (2021). Penyelenggaraan Penataan Ruang.
Sherpa, S.F., and Shirzaei, M. (2021). Country-Wide Flood Exposure Analysis Using Sentinel-1 Synthetic Aperture Radar Data: Case Study of 2019 Iran Flood. Journal Flood Risk Management, 1-16.
Sipelgas, L., Aavaste, A., and Uiboupin, R. (2021). Mapping Flood Extent and Frequency from Sentinel-1 Imagery During the Extremely Warm Winter of 2020 in Boreal Floodplains and Forests. Journal Remote Sensing MDPI, 4949: 1-17.
Sudaryatno., Wiratmoko, B., Winanda., and Saputri, S.Y. (2020). Using Hydrological Mapping to Evaluate the Effectiveness of the Bener Dam Development in Reducing Flood Risk in Purworejo Regency, Central Java. Jurnal Forum Geografi, 34(2): 86-95.
Sudirman., Sutomo, S.T., Barkey, R.A., and Ali Mukti. (2017). Faktor-Faktor yang Mempengaruhi Banjir/ Genangan di Kota Pantai dan Implikasinya Terhadap Kawasan Tepian Air. Seminar Nasional Space #3 Implementasi Rencana Tata Ruang dan Perencanaan Kolaborasi, 141-157.
Tsyganskaya, V., Martinis, S., Marzahn, P., and Ludwig, R. (2018). Detection of Temporary Flooded Vegetation Using Sentinel-1 Time Series Data. Journal of Remote Sensing MDPI, 1286: 1-23.
Vanama, V.S.K., Rao, Y.S., and Bhatt, C.M. (2021). Change Detection Based Flood Mapping Using Multi-Temporal Earth Observation Satellite Images: 2018. Flood Event of Kerala, India. European Journal of Remote Sensing, 54(1); 42-58.
Copyright (c) 2023 Journal of Applied Geospatial Information
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JAGI are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.