Identification of Mangrove Cover in Banten Bay using Google Earth Engine
Abstract
The existence of mangroves is a factor in the natural preservation of an area. The goal of this research is to identify the mangrove forest cover in Teluk Banten using guided classification based on machine learning available in GEE.The method used in this research is to visually analyze the spectral value of Sentinel 2A. The composite images used in the analysis include Bands 8A114 and Bands 8A115. Determination of subset images (cropping) is carried out to accommodate the size of the image according to the size of the research location to determine its distribution, extent and changesMangrove classification can be done using various digital image classification approaches, including pixel-based classification, object-based classification, and supervised and unsupervised learning. The choice of classification scheme depends on the purpose of the study and the available data. The mangrove cover area that is seen in red shows that the results of using the CART model can determine the area that is included in the mangrove class.Mangrove identification using GEE machine learning can produce mangrove cover. The result of mangrove cover area depends on how much training area is given. Training areas are used by CART in determining which areas are categorized as mangrove cover.
Downloads
References
Dinilhuda, A., Akbar, A. A., & Jumiati. (2018). Peran Ekositem Mangrove bagi Mitigasi pemanasan global. Jurnal Teknik Sipil 18 (2).
Eddy, S., Iskandar, I., Ridho, M. R., & Mulyana., A. (2019). Restorasi Hutan Mangrove Terdegradasi Berbasi Masyarakat Lokal. Jurnal Indobiosains 1(1), 1-13.
Hariyanto, T., Pribadi, C. B., & Atsilah, I. S. 2023. Analisis Hasil Identifikasi Persebaran Mangrove Berdasarkan Algoritma Normalized Difference Vegetation Index dan Mangrove Vegetation Index Menggunakan Citra Satelit Sentinel-2 (Studi Kasus: Taman Nasional Alas Purwo). Journal of Geodesy and Geomatics 18(2), 285-292
Jiang, Y., Zhang, L., Yan, M., Qi, j., Fu, T., Fan, S., & Chen, B. 2021. High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Journal Of Remote Sensing 13(1529)
Fariz, T. R., Permana, P. I., Daeni, F. & Putra, A. C. P. (2021). Pemetaan Ekosistem Mangrove di Kabupaten Kubu Raya Menggunakan Machine Learning pada Google Earth Engine. Jurnal Geografi 18(2), 83-89.
Maurya, K., Mahajan, S. & Chaube, N. (2021). Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex Intell. Syst. 7, 2797–2818.
Nagendra, I. W. M. D., Karang, I. W. G. A., & Puspitha, N. L. P. R. (2019). Perbandingan Kemampuan Satelit SAR, Optik dan Kombinasi SAR & Optik Untuk Mendeteksi Area Mangrove di Teluk Benoa. Journal of Marine and Aquatic Sciences 5(2), 260-272.
Nahohy, L. H., & Masniar, M. (2020). Manfaat Ekositem Mangrove Dalam Meningkatkan Kualitas Lingkungan Masyarakat Pesisir. Journal of Comutiny Service 2(2), 1-4.
Purwanto, A. D., & Setiawan K. T. (2015). Metode Indetifikasi Mangrove Menggunakan citra Satelite Lansat 8. Prosiding Seminar Pertemuan Ilmiah Tahunan 2014.
Simarmata, N., Wikanta, K., Tarigan, T, A., Aldyansyah, M., Tohir, R. K., Fauziah, A., & Purnama, Y. (2021). Analisis Transformasi Indeks Ndvi, Ndwi Dan Savi Untuk Identifikasi Kerapatan Vegetasi Mangrove Menggunakan Citra Sentinel Di Pesisir Timur Provinsi Lampung. Jurnal Geografi 19(2), 69-79.
Shih, H., Stow, D. A., & Tsai Y. H. (2018). Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping. International Journal of Remote Sensing
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackbenbush, L., & Adeli, S. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. Journal of Photogrammetry and Remote Sensing 164(1), 152-170.
Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology 1(1), 9-23.
Zhao, C and Qin, C. (2022). Identifying large-area mangrove distribution based on remote sensing: A binary classification approach considering subclasses of non-mangroves. International Journal of Applied Earth Observation and Geoinformation 108.
Copyright (c) 2023 Journal of Applied Geospatial Information
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JAGI are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.