AHP Scoring and Weighting Main Criteria For Assessment of Potential Hydrometeorological Disasters: A Literature Study

  • Octo Mario Pasaribu Sensing Technology Study Program, Faculty of Defense Technology, Indonesia Defense University https://orcid.org/0000-0003-0407-523X
  • Aris Poniman Sensing Technology Study Program, Faculty of Defense Technology, Indonesia Defense University
  • Andrian Andaya Lestari Sensing Technology Study Program, Faculty of Defense Technology, Indonesia Defense University https://orcid.org/0000-0001-7688-5130
  • Yosef Prihanto Sensing Technology Study Program, Faculty of Defense Technology, Indonesia Defense University https://orcid.org/0000-0002-0821-3364
  • Asep Adang Supriyadi Sensing Technology Study Program, Faculty of Defense Technology, Indonesia Defense University https://orcid.org/0000-0003-1103-6669
  • Trismadi Trismadi Sensing Technology Study Program, Faculty of Defense Technology, Indonesia Defense University
Keywords: AHP, hydrometeorological disaster, criteria, weighting

Abstract

In general, the territory of Indonesia is prone to hydrometeorological disaster events. In disaster management, it is necessary to map the source or level of potential disaster hazards. The Analytic Hierarchy Process (AHP) method has been used to determine the relative importance of each criterion for potential mapping disasters. This literature study aims to determine the criteria and weighting in the AHP approach that can be used in assessing the potential for hydrometeorological disasters. This literature review is limited by analyzing and assessing the potential, vulnerability, and vulnerability of floods, landslides, and tornadoes using the AHP method. The input data used in the literature is based on the opinions of experts, interested stakeholders, and related regulations to determine the criteria and their weighting. The results of this literature review show that the three criteria are the dominant determining factors in assessing and analysing the three hydrometeorological disasters. The scoring of each criterion is based on its impact on the disaster.

Downloads

Download data is not yet available.

References

Abdullah, A.G., Setiorini, A.H., Dwitasari, N.A., Hakim, D.L., Aziz, M., 2021. Location Suitability Analysis for Wind Farm Exploitation Using Fuzzy Analytic Hierarchy Process. Indones. J. Sci. Technol. 6, 523–534. https://doi.org/10.17509/ijost.v6i3.38957

Aksha, S.K., Resler, L.M., Juran, L., Carstensen, L.W., 2020. A geospatial analysis of multi-hazard risk in Dharan, Nepal. Geomatics, Nat. Hazards Risk 11, 88–111. https://doi.org/10.1080/19475705.2019.1710580

Azmiyati, U., Poernomo, N.S., 2019. Penilaian Risiko Multi Bencana di Jakarta, Indonesia. JUPE J. Pendidik. Mandala 4. https://doi.org/10.58258/jupe.v4i5.811

Bayuaji, D.G., Nugraha, A.L., Sukmono, A., 2016. Analisis penentuan zonasi risiko bencana tanah longsor berbasis sistem informasi geografis (Studi kasus: Kabupaten Banjarnegara). J. Geod. Undip 5, 326–335.

BPS Kabupaten Deli Serdang, 2022. Kecamatan Hamparan Perak Dalam Angka 2022. BPS Kabupaten Deli Serdang, Deli Serdang.

Budianta, W., 2021. Pemetaan Kawasan Rawan Tanah Longsor di Kecamatan Gedangsari, Kabupaten Gunungkidul, Yogyakarta dengan Metode Analytical Hierarchy Process (AHP). J. Pengabdi. Kpd. Masy. (Indonesian J. Community Engag. 6, 68. https://doi.org/10.22146/jpkm.45637

Cabrera, J.S., Lee, H.S., 2020. Flood risk assessment for Davao Oriental in the Philippines using geographic information system‐based multi‐criteria analysis and the maximum entropy model. J. Flood Risk Manag. 13, 1–17. https://doi.org/10.1111/jfr3.12607

Darmawan, Y., Nainggolan, L., Hutapea, T.D., Syahputra Makmur, E.E., Munir, I.M., 2020. Mapping of Tornado Wind Vulnerability using Satellite Data (Study case of Humbang Hasudutan Regency, North Sumatera), in: IOP Conference Series: Materials Science and Engineering. IOP Publishing Ltd. https://doi.org/10.1088/1757-899X/982/1/012014

Dodgson, J.S., Spackman, M., Pearman, A.D., Phillips, L.D., 2009. Multi-criteria analysis: a manual, Communities and Local Government Publications. Department for Communities and Local Government, London.

Ercanoglu, M., Kasmer, O., Temiz, N., 2008. Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping. Bull. Eng. Geol. Environ. 67, 565–578. https://doi.org/10.1007/s10064-008-0170-1

Fadillah, A.Y., Nurdin, M.R., 2021. The Analysis of Angin Puting Beliung Risk Rate by Utilization of Remote Sensing and Geographic Information Systems in Semarang. Int. J. Disaster Dev. Interface 1, 1–17. https://doi.org/10.53824/ijddi.v1i1.2

Hardianto, A., Winardi, D., Rusdiana, D.D., Putri, A.C.E., Ananda, F., Devitasari, Djarwoatmodjo, F.S., Yustika, F., Gustav, F., 2020. Pemanfaatan Informasi Spasial Berbasis SIG untuk Pemetaan Tingkat Kerawanan Longsor di Kabupaten Bandung Barat, Jawa Barat. J. Geosains dan Remote Sens. 1, 23–31. https://doi.org/10.23960/jgrs.2020.v1i1.16

Haris, F.D., Sitorus, S.R.., Tjahjono, B., 2022. Kesesuaian Rencana Tata Ruang Wilayah (RTRW) berbasis bahaya banjir menggunakan analisis hierarki proses di Kabupaten Kuningan. Reg. J. Pembang. Wil. dan Perenc. Partisipatif 17, 124. https://doi.org/10.20961/region.v17i1.44172

Hermon, D., 2012. MITIGASI BENCANA HIDROMETEOROLOGI, UNP Press. UNP Press, Padang.

Hussain, M., Tayyab, M., Zhang, J., Shah, A.A., Ullah, K., Mehmood, U., Al-Shaibah, B., 2021. GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan. Sustainability 13, 3126. https://doi.org/10.3390/su13063126

Isneni, A.N., Putranto, T.T., Trisnawati, D., 2020. Analisis Sebaran Daerah Rawan Longsor Menggunakan Remote Sensing dan Analytical Hierarchy Process (AHP) di Kabupaten Magelang Provinsi Jawa Tengah. J. Geosains dan Teknol. 3, 149–160. https://doi.org/10.14710/jgt.3.3.2020.149-160

Karnawati, D., Ibriam, I., Anderson, M.G., Holcomb, E.A., Mummery, G.T., Renaud, J.P., Wang, Y., 2012. An Initial Approach to Identifying Slope Stability Controls in Southern Java and to Providing Community-Based Landslide Warning Information, in: Landslide Hazard and Risk. pp. 733–765. https://doi.org/10.1002/9780470012659.ch25

Khafid, M.A., 2019. Analisis Penentuan Zonasi Pemukiman Risiko Bencana Tanah Longsor Berbasis Sistem Informasi Geografis: Studi Kasus Kecamatan Gedangsari, Kabupaten Gunung Kidul, Daerah Istimewa Yogyakarta. J. Meteorol. Klimatologi dan Geofis. 6, 49–57. https://doi.org/10.36754/jmkg.v6i1.114

Kuncoro, E., Rismayanti, I., Rahman, I., 2021. Pemodelan spasial bahaya dan kerentanan bencana tanah longsor dengan metode AHP berbasis SIG GIS-based AHP spatial modeling for landslide hazard and vulnerability. J. Himasapta 6, 149–158.

Morales, F.F., de Vries, W.T., 2021. Establishment of Natural Hazards Mapping Criteria Using Analytic Hierarchy Process (AHP). Front. Sustain. 2. https://doi.org/10.3389/frsus.2021.667105

Pishyar, S., Khosravi, H., Tavili, A., Malekian, A., Sabourirad, S., 2020. A Combined AHP- and TOPSIS-Based Approach in the Assessment of Desertification Disaster Risk. Environ. Model. Assess. 25, 219–229. https://doi.org/10.1007/s10666-019-09676-8

Ramadhani, D., Hariyanto, T., Nurwatik, N., 2022. Penerapan Metode Analytical Hierarchy Process (AHP) dalam Pemetaan Potensi Banjir Berbasis Sistem Informasi Geografis (Studi Kasus: Kota Malang, Jawa Timur). Geoid 17, 72. https://doi.org/10.12962/j24423998.v17i1.10250

Ryka, H., Pratikno, F.A., Battu, D.P., 2022. APLIKASI ANALYTICAL HIERARCHY PROCESS (AHP) METODE PARWISE COMPARISON UNTUK PENENTUAN KAWASAN RAWAN BANJIR DI BALIKPAPAN TENGAH. PETROGAS J. Energy Technol. 4, 42–50.

Saaty, T.L., 2008. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83. https://doi.org/10.1504/IJSSCI.2008.017590

Sharma, A., Miyazaki, H., 2019. MULTI-HAZARD RISK ASSESSMENT IN URBAN PLANNING AND DEVELOPMENT USING AHP. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-3/W8, 363–371. https://doi.org/10.5194/isprs-archives-XLII-3-W8-363-2019

Subahagio, A., 2021. Sistem Informasi Geografis Rawan Banjir Menggunakan Metode Ahp Untuk Mengetahui Parameter Signifikan Penyebab Banjir (Studi Kasus : Kecamatan Kalitengah Kabupaten Lamongan). Institut Teknologi Nasional Malang.

Syafi’i, M.H., Wiranursamsu, C., Jacobeth Mangngi Uly, H., Wardhana, K.W., Prasetyani, I., Mario Pasaribu, O., Adang Supriyadi, A., Arief, S., AG Gultom, R., Prihantoro, K., 2022. Determining An Optimal Airport Location For Country Capital Case Study: Capital Region Nusantara, in: 2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE, pp. 131–136. https://doi.org/10.1109/ICACSIS56558.2022.9923441

Syafitri, A.N., Maru, R., Invanni, I., 2021. ANALISIS TINGKAT BAHAYA BENCANA ANGIN PUTING BELIUNG BERBASIS SISTEM INFORMASI GEOGRAFIS DI KABUPATEN SIDENRENG RAPPANG. J. Environ. Sci. 3. https://doi.org/10.35580/jes.v3i2.20031

Tarigan, A.P.M., Rahmad, D., Sembiring, R.A., Iskandar, R., 2018. An application of the AHP in water resources management: a case study on urban drainage rehabilitation in Medan City. IOP Conf. Ser. Mater. Sci. Eng. 309, 012096. https://doi.org/10.1088/1757-899X/309/1/012096

Tashayo, B., Honarbakhsh, A., Azma, A., Akbari, M., 2020. Combined Fuzzy AHP–GIS for Agricultural Land Suitability Modeling for a Watershed in Southern Iran. Environ. Manage. 66, 364–376. https://doi.org/10.1007/s00267-020-01310-8

Tim Penyusun BNPB, 2019. Pedoman Penyusunan Rencana Penanggulangan Kedaruratan Bencana (RPKB). BNPB, Jakarta.

Ulfiana, D., Windarto, Y.E., Bashit, N., Ristianti, N.S., 2021. Analisis Kerawanan Banjir sebagai Pendukung Perencanaan Model Water Sensitive Urban Design di Kabupaten Klaten. MEDIA Komun. Tek. SIPIL 26, 183–193. https://doi.org/10.14710/mkts.v26i2.31929

Wahyuningtyas, A., Pratomo, R.A., 2015. IDENTIFIKASI POTENSI MULTI-BENCANA DI KABUPATEN LANDAK KALIMANTAN BARAT. Geoplanning J. Geomatics Plan. 2, 10–21. https://doi.org/10.14710/geoplanning.2.1.10-21

Published
2023-02-18