Mapping Land Coverage in the Kapuas Watershed Using Machine Learning in Google Earth Engine
Abstract
Land cover information is essential data in the management of watersheds. The challenge in providing land cover information in the Kapuas watershed is the cloud cover and its significant area coverage, thus requiring a large image scene. The presence of a cloud-based spatial data processing platform that is Google Earth Engine (GEE) can be answered these challenges. Therefore this study aims to map land cover in the Kapuas watershed using machine learning-based classification on GEE.
The process of mapping land cover in the Kapuas watershed requires about ten scenes of Landsat 8 satellite imagery. The selected year is 2019, with mapped land cover classes consisting of bodies of water, vegetation cover, open land, and built-up area. Machine learning that tested included CART, Random Forest, GMO Max Entropy, SVM Voting, and SVM Margin.
The results of this study indicate that the best machine learning in mapping land cover in the Kapuas watershed is GMO Max Entropy, then CART. This research still has many limitations, especially mapped land cover classes. So that research needs to be developed with more detailed land cover classes, more diverse and multi-time input data.
Downloads
References
Congalton, R. G. (2001). Accuracy assessment and validation of remotely sensed and other spatial information. International Journal of Wildland Fire, 10(4), 321-328.
Danoedoro, P. (2006). Versatile Land-use Information for Local Planning in Indonesia. Disertasi. Centre for Remote Sensing and Spatial Information Science (CRSSIS). School of Geography, Planning and Architecture. The University of Queensland.
Danoedoro, P. (2012). Pengantar penginderaan jauh digital. Yogyakarta: Penerbit Andi
Effendi, E. (2008). Kajian Model Pengelolaan Daerah Aliran Sungai (DAS) Terpadu. Direktorat Kehutanan dan Konservasi Sumberdaya Air, Badan Perencanaan Pembangunan Nasional. Jakarta.
Estes J. (1992). Remote sensing and GIS Integration: Research Needs, Status and Trends. ITC Journal (3)
Farda, N. M. (2017). Multi-temporal land use mapping of coastal wetlands area using machine learning in Google earth engine. IOP Conference Series: Earth and Environmental Science (Vol. 98, No. 1, p. 012042). IOP Publishing.
Farda, N. M. (2020). Image classification – Machine learning. Accessed from code.earthengine.google.com/?accept_repo=users/farda/EE03 at 9 July 2020
Farda, N. M., Danoedoro, P., Harjoko, A. (2016). Image mining in remote sensing for coastal wetlands mapping: from pixel based to object based approach. IOP Conference Series: Earth and Environmental Science (Vol. 47, No. 1, p. 012002). IOP Publishing.
Gastellu-Etchegorry, J. P. (1988). Predictive models for remotely-sensed data acquisition in Indonesia. International Journal of Remote Sensing, 9(7), 1277-1294.
Hu, Y., & Hu, Y. (2019). Land cover changes and their driving mechanisms in Central Asia from 2001 to 2017 supported by Google Earth Engine. Remote Sensing, 11(5), 554.
Kamal, M., Farda, N. M., Jamaluddin, I., Parela, A., Wikantika, K., Prasetyo, L. B., & Irawan, B. (2020). A preliminary study on machine learning and google earth engine for mangrove mapping. IOP Conference Series: Earth and Environmental Science (Vol. 500, No. 1, p. 012038). IOP Publishing.
Levick, S. R., Bae, S., Guderle, M., Singh, J., Luck, L. 2019. Introduction to remote sensing of the environment. Accessed from geospatialecology.com at 14 July 2020
Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784-2817.
Pemerintah Republik Indonesia. 2015. Peraturan Presiden Republik Indonesia Nomor 2 Tahun 2015 tentang Rencana Pembangunan Jangka Menengah Nasional Tahun 2015 – 2019. Sekretariat Negara: Jakarta
Pontius Jr, R. G., Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429.
Poongothai, S., Sridhar, N., & Shourie, R. A. (2014). Change detection of land use/land cover of a watershed using remote sensing and GIS. Inter. J. Engg. Adv., Tech, 3(6), 226-230.
Setyowati, D. L., Amin, M., Suharini, E., & Pigawati, B. (2012). Model Agrokonservasi Untuk Perencanaan Pengelolaan Das Garang Hulu. TATALOKA, 14(2), 131-141.
Setyowati, D. L., Arsal, T., Hardati, P., & Prabowo, K. Z. (2019). Morphoconservation analysis on Kali Garang as a river conservation effort. In IOP Conference Series: Earth and Environmental Science (Vol. 243, No. 1, p. 012007). IOP Publishing.
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. frontiers in Earth Science, 5, 17.
Shih, H. C., Stow, D. A., & Tsai, Y. H. (2019). Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping. International Journal of Remote Sensing, 40(4), 1248-1274.
Story, M., & Congalton, R. G. (1986). Accuracy assessment: a user’s perspective. Photogrammetric Engineering and remote sensing, 52(3), 397-399.
Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sensing, 12(7), 1135.
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152-170.
Yu, Z., Di, L., Yang, R., Tang, J., Lin, L., Zhang, C., ... & Sun, Z. (2019). Selection of Landsat 8 OLI Band Combinations for Land Use and Land Cover Classification. In 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 1-5). IEEE.
Copyright (c) 2020 Journal of Applied Geospatial Information
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JAGI are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.