Mapping of Spatial Distribution and Spatial Autocorrelation Patterns of Poverty in All Regencies/Cities in Indonesia
Abstract
Abstract
Poverty alleviation programs in Indonesia are the same and uniform in all regions. Of course this ignores the characteristics and causes of poverty that vary in each region. The uniformity of poverty alleviation programs affects the slow pace of decline in the poor population. Spatial influence on poverty can be identified by spatial autocorrelation; there is a relationship of poverty in one region with other regions that are closed together. This study was aimed to analyzing poverty spatial distribution in all regencies/cities in Indonesia; analyzing the spatial distribution patterns of poverty in all regencies/cities in Indonesia; and knowing local spatial autocorrelation of poverty in all regencies/cities in Indonesia. The research methods used are Moran Index analysis, Moran’s scatterplot analysis, and Local Indicators of Spatial Autocorrelation (LISA) analysis. The analysis results show that the highest average of poor population percentage was in Papua and the lowest one was in Kalimantan. The results of analysis of Moran Index showed that the spatial distribution pattern of poverty in regencies/cities in Indonesia was clustered, it was called by poverty pocket. Pockets of poverty that occured do not correspond to government administrative boundaries, therefore poverty alleviation needs an integrative approach. In addition, this study also results that not all regencies/cities have significant spatial autocorrelation. This means that not all poverty conditions in a regencies/cities have a relationship with other regencies/cities. The fact that there are heterogeneity of poverty characteristics like this shows that poverty alleviation programs must vary in each regency/city.
Keywords: City, LISA, Moran, Povety, Regency, Spatial
Downloads
References
Arlinghaus, SL. (1996). Practical Handbook of Spatial Statistics. CRC Press Inc, United States.
[Bappenas] Badan Perencanaan dan Pembangunan Nasional. (2005). Visi Arah Pembangunan Jangka Panjang (PJP) Tahun 2005-2025. Badan Perencanaan dan Pembangunan Nasional, Jakarta.
[Bappenas] Badan Perencanaan dan Pembangunan Nasional. (2014). Rencana Pembangunan Jangka Menengah Nasional 2014-2019. Badan Perencanaan dan Pembangunan Nasional, Jakarta.
Bekti, RD. (2012). Autokorelasi Spasial untuk Identifikasi Pola Hubungan Kemiskinan di Jawa Timur. Jurnal Comtech, 3(1), 217-227.
[BPS] Badan Pusat Statistik. (2017). Penghitungan dan Analisis Kemiskinan Makro Indonesia. Badan Pusat Statistik, Jakarta.
Chen, XW., Pei, ZY., Chen, AI., Wang, F., Shen, KJ., Zhou, QF., Sun, L. (2015). Spatial Distribution Patterns and Influencing Factor of Poverty -A Case Study on Key Country From National Contiguous Special Poverty- Stricken Areas in China. Procedia Enviromental Sciences, 26, 82-90.
Hakim, L., Zuber, A. (2008). Dimensi Geografis dan Pengentasan Kemiskinan Pedesaan. Fakultas Ekonomi Universitas Trisakti, Jakarta.
Harmes., Juanda, B., Rustiadi, E., Barus, B. (2017). Pemetaan Efek Spasial pada Data Kemiskinan Kota Bengkulu. Journal of Regional and Rural Development Planning, 1(2), 192-201.
Hasbullah, J. (2012). Tangguh dengan Statistik Akurat dalam Membaca Realita Dunia. Penerbit Nuansa Cendekia, Bandung.
Irawan, E., Haryanti, N., Priyanto E. (2013). Pola Spasial Kemiskinan di Provinsi Jawa Tengah: Suatu Analisis Eksploratif. Makalah Seminar Nasional Pendayagunaan Informasi Geospatial untuk Optimalisasi Otonomi Daerah. Balai Penelitian Teknologi Kehutanan Pengelolaan Daerah Aliran Sungai, Surakarta.
Lee, J., Wong, DWS. (2001). Statistics for Spatial Data. John Wiley & Sons, New York.
Majid, MR., Jaffar, AR., Man, NC., Vaziri, M., Sulemana, M. (2016). Mapping Poverty Hot Spots in Peninsular Malaysia Using Spatial Autocorrelation Analysis. Journal of The Malaysia Institute of Planners, 4, 1-16.
Odeyemi, A., Olamide, V. (2013). Spatial Autocorrelation and Temporal Statistics of Poverty Index in Nigeria. European Journal of Humanities and Social Sciences, 25(1), 1-22.
Pravitasari, AE., Rustiadi, E., Mulya, SP., Fuadina, LN. (2018). Developing Regional Sustainability Index as a New Approach for Evaluating Sustainability Performance in Indonesia. Jurnal of Environment and Ecology Research, 6(3), 157-168.
Sowunmi, FA., Akinyosoye, VO., Okoruwa, VO., Omonona, BT. (2012). The Landscape of Poverty in Nigeria: A Spatial Analysis Using Senatorial Districts-Level Data. American Journal of Economics, 2(5), 61-74.
Susila, AR. (2011). Analisis Sebaran Kemiskinan dan Faktor Penyebab Kemiskinan di Kabupaten Lebak [Tesis]. Sekolah Pascasarjana Institut Pertanian Bogor, Bogor.
Syafitri, UD., Sholeh, AM., Suprapti, P. (2008). Simulasi Radius Jarak Pengaruhnya terhadap Kebaikan Model Regresi Logistik Spasial. Makalah Seminar Nasional Matematika dan Pendidikan Matematika. Univeristas Negeri Yogyakarta, Yogyakarta.
Zhukof, Y. (2010). Spatial Autocorrelation. Harvard University IQQ, United States.
Copyright (c) 2020 Journal of Applied Geospatial Information
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JAGI are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.